

1.2 Types of Crystalline Solids Based on Binding Forces

New Section 1 Page 1

	\checkmark			
Propertíes	Ioníc Solíds	Metallíc Solíds	Covalent/Network Solíds	Molecular Solíds
Constituent Partícles	Posítíve and negatíve íons	Posítíve íons ín a 'sea' of electrons	Atoms	Molecules
Binding Force	Electrostat íc attractíon between íons	Electrostatic attraction between cations and sea of electrons	Strong covalent bonds 🖌	Weak van der Waals forces and dípole-dípole ínteractíons
Hardness	Hard	Hard to very hard	Very hard (except graphíte whích ís soft)	Very soft
Bríttleness	Hígh	Very low	Medíum	Low

Meltíng Poínt	Moderate to very hígh	Low to very hígh	Very hígh	Low
Electrical Conductivity	Bad conductors (conductor s ín molten state)	Very good conductors	Bad conductors (except graphite) V free e	Bad conductors
Solubílíty	Soluble in polar, insoluble in non- polar solvents	Insoluble ín polar and non-polar solvents	Insoluble ín polar, usually soluble ín non-polar solvents	Some soluble ín polar, some ín non-polar, some ín both
Examples	NaCl, Z.n.S, KNO3, CaO, BaCl2, MgO, NaNO3	Metals and alloys	Díamond, graphíte, S, quartz, SíO ₂ , SíC, AlN	CCl4, H2, CO2, H2O, N2, I2, sugar, Ar, CH4

2. CRYSTAL LATTICE & UNIT CELL

2.1 Crystal Lattice

- **Definition**: Regular arrangement of an infinite set of points which describes the three-dimensional arrangement of constituent particles in space
- Also called space lattice

2.2 Unít Cell

• **Definition**: Smallest repeating unit of a space lattice which, when repeated over and over in three dimensions, results into the whole crystal

• Types of Unit Cells:

1. Simple/Primitive (P): Particles only at corners

a. Face-Centered (F): Particles at corners and at center of each face

b. Body-Centered (I): Particles at corners and at body center

2.3 Characterístics of Dífferent Unit Cells

Property	Símple Cubíc	Face-Centered Cubic	Body-Centered Cubíc	
Posítíon of partícles	Only at corners	At corners and center of each face	At corners and body center	
No. of atoms per unit cell	1 🗸	4	2	
Coordination number	6 V	12	8	- Z(x)
Packíng efficiency	52%	74%	68%	J

2.4 Calculation of Number of Particles per Unit Cell

- Corner atom contribution = 1/8 per corner
- Face-centered atom contribution = 1/2 per face
- Edge atom contribution = 1/4 per edge
- Body-centered atom contribution = 1 atom

$$SC = \frac{\partial x_{R}}{\partial r} = 1$$

 $Fcc = 8x \frac{1}{R} + 8x \frac{1}{R}$

$$SC = \frac{8x}{8} = 1$$
 Fcc = $\frac{8x}{8} + \frac{1}{8} + \frac{1}{8}$
= $1 + 3 = 4$
Bcc = $\frac{8x}{8} + 1 = 1 + 1 = 2$.

2.5 Unit Cell Dimensions

- Símple cubíc:
 - 0 Edge length (a)
 - o Atomíc radíus (r) = a/2
- Face-centered cubic:
 - o Edge length (a)
 - 0 Atomíc radíus (r) = $a/(2\sqrt{2}) = 0.3535a$
- Body-centered cubic:
 - 0 Edge length (a)
 - 0 Atomíc radíus (r) = $(\sqrt{3})a/4 = 0.433a$

3. SEVEN CRYSTAL SYSTEMS

Crystal System	Relative Axial	Angles	Examples
	Length		
Cubíc	a = b = c	$ \alpha = \beta = \gamma = $	NaCl, CsCl, CaF ₂ , CaO
Tetragonal	$a = b \neq c$	$ \alpha = \beta = \gamma = $	K2PtCl6, PbWO4
Orthorhombic	a ≠ b ≠ c	$\alpha = \beta = \gamma =$ 90°	K2SO4, KNO3, BASO4, CACO3 (aragoníte)
Rhombohedral (trígonal)	a = b = c	$\alpha = \beta = \gamma \neq$ 90°	CaCO ₃ (calcíte), NaNO ₃
Hexagonal	$a = b \neq c$	α = β = 90°, γ = 120°	Agı, SíC, HgS
Monoclíníc	a ≠ b ≠ c	α = γ = 90°, β ≠90°	$CaSO_4 \cdot 2H_2O, K_2Fe(CN)_6$
Tríclíníc	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	$CUSO_4.5H_2O, K_2Cr_2O_7$

4. CLOSE PACKING IN CRYSTALS

4.1 Interstitial Sites in Closed Packed Structure

Voíd ⊤ype	Formation	Síze (r/R)	
Trígonal void	Formed at the center of three spheres	r = 0.155R	Q
Tetrahedral voíd	Formed by covering trigonal voids by spheres of lower layer	r = 0.225R	
Octahedral voíd	Formed at the center of six spheres	r = 0.414R	
Cubíc voíd		r = 0.732R	B

Where r = radius of void, R = Radius of closely packed spheres

ABAB ABCABC.

4.2 Characterístics of Voids

- \bullet if the number of closely packed spheres is N, then:
 - \circ Number of octahedral voids = N

 $\sqrt{2}$ Number of tetrahedral voids = 2N

4.3 Packing Systems

New Section 1 Page 5

- Square close packing: Spheres of adjacent rows one over the other
- Hexagonal close packing: Spheres of every second row placed in depression between spheres of first row
- Body-centered cubic: Not the closest system, spheres of first row slightly open and not in contact

4.4 Radíus Ra	tio and Coor	dination Nun	uber	$\dot{\bigcirc}$
Badius Batio	Coordínatio	Structural	Ctrusture	

Radíus Ratío	Coordinatio	Structural	Structure	Examples
(r+/r_)	n Number	Arrangemen	Туре	
		t		

		t		
0.155 - 0.225	3	Planar	-	B203
		tríangular		
0.225 - 0.414	4	Tetrahedral	Sphaleríte,	CuCl, CuBr, CuI,
			ZnS	Bas, Hgs
0.414 - 0.732	6	Octahedral	Sodíum	NaBr, KBr,
			chloríde (Rock	MgO, MnO,
			salt)	cao, cas
0.732 - 1.000	8	Body-	Caesíum	CsI, CsBr, TlBr
		centered	chloríde	
		cubíc		

4.5 Packing Fraction

- Formula: $f = (Z \times Volume of one sphere) / (Volume of the unit cell)$
- For elements: $f = (Z \times (4\pi r^3/3)) / a^3$
- where Z = number of atoms/unit cell (1 for simple, 2 for bcc, 4 for fcc)

4.6 Relation between Density and Edge of Cubic Crystals

- $\bullet \ \rho = ({\cal Z} \ \times \ {\sf M}) \ / \ ({\rm a}^{_{\Im}} \ \times \ {\sf N}_a)$
- where Z = number of formula units in unit cell
- M = formula mass (molecular mass) of the compound
- a = edge length of unit cell
- $N_a = Avogadro's$ number

5. CHARACTERISTIC PROPERTIES OF VARIOUS TYPES OF IONIC SOLIDS

Туре	Crystal	Ions Forming	lons	Coordination	No. of	Examples
	Structure	Close Packed	Present ín	Number	Formula	
		Structure	∨oíds		Uníts	
AB	ZnS type	S ²⁻ íons form	Zn²+íons	$Z_{N^{2}}^{+} = 4, S^{2^{-}}$	4	ZnS, AgI,
		ccp structure	ín	= 4		CuCl,

			alternate			cds,
			tetrahedral			HgS,
			voíds			CuBr, Cul,
						Bes, BeO,
						ZnO
AB	Nacloype	Cl⁻íons form	Natíons	$Na^{+} = 6, Cl^{-} =$	4	NaCl,
	COL	ccp structure	ín all	6		LÍCI, KBr,
		1	octahedral			AgBr,
			holes			MgO, CSI,
						CaO, FeO,
						COO, NÍO
AB	Cscltype	bcc structure,	Cs ⁺ íons at	Cs ⁺ = 8, Cl ⁻ = 8	1	CsCl,
	Bac	Cl⁻íons at	the center			CSCN,
		corners of cube	ofcube			CaS, CsI,
						TICI, TIBr,
						TLI, TLCN
AB2	CaF2 type	Ca²t íons	F ⁻ íons ín	$Ca^{2^+} = 8, F^- = 4$	4	CaF ₂ ,
	(Fluoríte)	form ccp	all			Bacl2,
		structure	tetrahedral			PhO2.
			holes			SrCla
						CdE_2
					<u></u>	
A2B	Nu20 type	02 Lons form	NU LOUS	$Nu = 4, 0^2 =$	7	NU20,
	Antifluori	ccp structure	IN ULL	X		$K_2O, Li_2O,$
			tetranearal			K_2S
	structure)		noles			

6. IMPERFECTIONS IN CRYSTALS

Defect	Nature of Defect
Schottky	Atom or ion missing from lattice
	point giving a vacancy. Density of crystal is lowered.
Interstítíal	Atom or íon present ín a vacant voíd, also called hole (or ínterstítíal síte).
Frenkel	Hybrid defect from combination of vacancy and interstitial defect. Atom or ion at lattice point displaced to an interstitial site creating a vacancy.
F-centre	Electron trapped in an anionic

	vacancy. If concentration of F-
	centres is high, colorless crystals
	(líke KCl, LíCl, NaCl) develop
	some color.
Díslocatíon	Line defects called dislocations.
Non-	Compounds contain combining
stoíchíometríc	elements in ratio different from
	stoichiometric formulae. E.g.,
	$VO_2 (x = 0.6 \text{ to } 1.3), FC_{0.95}O.$

7. ELECTRICAL PROPERTIES

7.1 Classification Based on Conductivity

- Conductors: Allow passage of electric current 0 Conductivity: $10^6 - 10^8$ ohm⁻¹ cm⁻¹
- Semíconductors: Intermedíate conductívíty
 Conductívíty: 10⁻⁹ 10² ohm⁻¹ cm⁻¹
- Insulators: Do not practically allow passage of electric current
 O Conductivity: 10^{-2⁰} ohm⁻¹ cm⁻¹

7.2 Types of Semiconductors

- Intrínsíc Semíconductors: Electrical conductivity due to internal disorder without adding external substance
- Extrínsíc Semíconductors: Show electrical conductivity due to externally added impurity
 - 0 n-type: Group 14 elements doped with group 15 elements, free electron increases conductivity
 - O p-type: Group 14 elements doped with group 13 elements, holes increase conductivity

8. MAGNETIC AND DIELECTRIC PROPERTIES

8.1 Magnetic Properties

- Díamagnetíc substances: Weakly repelled by external magnetíc field.
 E.g., N₂, NaCl, Zn, TíO₂
- Paramagnetic substances: weakly attracted by external magnetic field.

E.g., O2, Cu2⁺, Fe³⁺, Cr³⁺

- Ferromagnetic substances: Show permanent magnetism even in absence of external magnetic field. E.g., Ní, Fe, Co
- Antiferromagnetic substances: Have zero net dipole moment even though they have large number of unpaired electrons. E.g., MnO
- Ferrimagnetic substances: Possess very small net magnetic moment even though having large number of unpaired electrons. E.g., Fe₃O₄

8.2 Dielectric Properties

- Piezoelectricity: Electricity produced due to displacement of ions from their orderly arrangement by pplication of mechanical stress. E.g., PbZrO₃, NH₄H₂PO₄, quartz
- Pyroelectrícíty: Some piezoelectric crystals when heated produce a small electric current
- Ferroelectrícíty: Certaín píezoelectríc crystals show permanent alignment of dípoles even in absence of electric field. E.g., Rochelle salt, BaTíO₃
- Antiferroelectricity: In some crystals, equal number of dipoles are oriented in opposite directions so crystal does not possess net dipole moment. E.g., lead zirconate (PbZrO₃)

9. IMPORTANT POINTS FOR COMPETITIVE EXAMS

- Bragg's equation: 2d sin θ = n λ
 - o d = dístance between atomíc planes
 - $\circ \lambda =$ wavelength of X-rays used
 - $\circ \theta$ = angle at which X-rays are incident on face of crystal
 - 0 n = 1, 2, 3... (order of diffraction)
- Normal spinel structure: Structure where anions constitute ccp or fcc lattice and cations occupy voids
 - O Díposítive ions present in tetrahedral voids and triposítive ions in octahedral voids. E.g., MgAl₂O₄, MgCr₂O₄
- Inverse spinel structure: Dipositive ions present in octahedral holes and tripositive ions equally distributed between tetrahedral and octahedral holes. E.g., Fe $_3O_4$
- Isomorphism: Phenomenon wherein crystalline solids have similar chemical composition and same crystal shape. E.g., ZnSO4·7H2O and MgSO4·7H2O
- Ferromagnetic, ferrimagnetic, and antiferromagnetic substances show

New Section 1 Page 9

paramagnetism at higher temperatures due to greater alignment of spins. E.g., Fe3O4 is ferrimagnetic at room temperature but becomes paramagnetic at 850 K

- Curie temperature: Characteristic temperature above which no ferromagnetism is observed
- Cubic is the most symmetrical crystal system, while triclinic is the most unsymmetrical
- Polonium is the only metal that crystallizes in simple cubic lattice
- On pressurizing a crystal its coordination number increases while on heating coordination neuportation as trentel defects.

Previously Asked Solid State Questions & Solutions Question 1: JEE Main

Question: In a face-centered cubic lattice, atoms A occupy the corner positions and atoms B occupy the face-center positions. If one atom of B is missing from one of the face-centered positions, the formula of the

Compound is: A2B3	$8x - \frac{1}{8} = 1$ atom
A_2B_5 A_4B_3	$6x \frac{1}{2} = 3$ atom.
A_4B_4	- 2 atoms
	B & missing. 3-1 - a

Question 2: JEE Advanced

Question: The unit cell of an element of atomic mass 96 g/mol has an edge length of 480 pm. If the density of the element is 8.5 g/cm3, the type of cubic unit cell is:

Primitive cubic Body-centered cubic Face-centered cubic End-centered cubic

 $\rho = \frac{Z \times M}{a^3 N a} = \frac{23}{N} \frac{N}{a}$ $Z = \left(\frac{\rho a^3 N a}{M}\right)^3 \frac{23}{x 6.022 \times 10}$

New Section 1 Page 10

End-centered cubic

Question 3: NEET Question: CsCl has a body-centered cubic structure. The distance between the two nearest Cs⁺ ions is: √3a

а $a/\sqrt{2}$ $a\sqrt{3/2}$ where 'a' is the edge length of the unit cell.

Question 4: JEE Main Question: The radius of Na⁺ ion is 95 pm and that of Cl^- ion is 181 pm. The coordination number of Na⁺ ion in Nachogystal is: 0.525 4 γ_{-} [8] 8 12

Question 5: JEE Advanced

Question: In a cubic close-packed structure of a compound AB_2 , the anions B form the lattice and the cations A occupy only the octahedral voids. The percentage of octahedral voids occupied by the cations is:

voids. The perc	entage of octahei V. Oh	dral voids occupied Octa hedeal	by the cations Void =	No. of Cation
50% 75%	, V			No. of Oh voids
100%			Ξ	2 × 100
			Ξ	4 50%.

Question 6: NEET Question: The percentage of free space in a body-centered public unit cell is approximately: 32% 26% 48% 74%

Question 7: JEE Main Question: The number of atoms in 100 g of an FCC crystal with density $M = Pa^3 Na$ $M = Pa^3 Na$ Z. M = ? 12 X 1023 24×10^{23} 3 X 1023

Question 8: JEE Advanced

Question: A metal crystallizes in a face-centered cubic lattice with a unit cell edge of 400 pm. The density of the metal is 7.2 g/cm^3 . What is the molar mass of the metal?

27.4 g/mol 52.0 g/mol 104.1 g/mol 54.9 g/mol