
P-BLOCK ELEMENTS

- 1. General Electronic Configuration
- Group 13: ns2 np1
- Group 14: ns2 np2
- Group 15: ns² np³
- Group 16: ns2 np4
- Group 17: ns2 np⁵
- Group 18: ns² np⁶
- He (Helium) Exception: 1s2 (Full duplet)

2. General Trends in Properties

Property	Across a Períod (Left → Ríght)	Down a Group (Top → Bottom)
Atomíc Radíus	Decreases	Increases 🗸
Ionízatíon Energy	Increases	Decreases

(IE)		
Electronegatívíty (EN)	Increases	Decreases
Metallíc Character	Decreases	Increases
Non-Metallíc Character	Increases	Decreases
Electron Affinity (EA)	Becomes more negatíve (more attractíon)	Becomes less negatíve
Oxídatíon States	Increases ín varíatíon	Stability of higher oxidation states increases
Reactívíty	Non-metals more reactíve	Metals more reactíve

3. Unique Behavior of the First Element in Each Group

Group	Fírst Element	Uníque Characterístics
Group 13 (Boron)	В	Non-metal, forms covalent bonds, does not form B³+ íons easíly.
Group 14 (Carbon)	C	Forms multiple bonds (C=C, C≡C), shows allotropy (diamond, graphite). Catenation .
Group 15 (Nítrogen)	N	Exísts as N_2 due to strong tríple bond, maxímum covalency = 4.
Group 16 (Oxygen)	0	Exísts as O2 molecule, shows hígh electronegatívíty, forms multíple bonds.
Group 17 (Fluoríne)	F	Híghest electronegatívíty, strongest oxídízíng agent,

		only -1 oxídatíon state.
Group 18	He	Noble gas with only two electrons
(Helíum)		(1s²), does not form compounds.

4. Key Chemical Properties

(a) Oxídation States

- Group 13: +3, (Boron shows only covalent bonding)
- Group 14: +4, +2 (Pb²⁺ more stable due to inert pair effect)
- Group 15: -3, +3, +5 (Bi^{3+} more stable than Bi^{5+})
- Group 16: -2, +4, +6 (Oxygen mainly -2, others show + 6)
- Group 17: -1, +1, +3, +5, +7 (Fonly -1, others show multíple)
- Group 18: Mostly 0, but heavier elements like Xe form compounds (+2, +4, +6)

(b) Acídic, Basic & Amphoteric Nature of Oxides

- Acídíc: Non-metals $(CO_2, N_2O_5, SO_3, Cl_2O_7)$
- Basíc: Metals (Al₂03, Pbb)
- Amphoteric: Intermediate elements (B_2O_3, Al_2O_3)

(c) Reactivity with Hydrogen (Hydrides)

- Stability decreases down the group (NH₃ > PH₃ > AsH₃ > SbH₃)
- Bond angles decrease down the group due to decreasing electronegativity

(d) Reactivity with Halogens

• Forms tríhalídes & pentahalídes (PCl3, PCl5, SF6, IF7)

• Stability of higher oxidation states increases down the group

(e) Reactivity with Oxygen (Oxides)

- Basíc Oxídes: Formed by metals
- Acídíc Oxídes: Formed by non-metals
- Amphoteric Oxides: Have dual nature (Al_2O_3, SnO_2)
- 5. Anomalous Properties of the First Element

🗹 Small síze

🗹 Hígh electronegatívíty

Strong bond formation (multiple bonds: C=C, $N\equiv N$, O=O)

Non-availability of d-orbitals (only s and p orbitals used)

 \checkmark Formation of π -bonds (C=C, C=C, N=N)

6. Important Compounds & Uses

Compound	Uses
NH3 (Ammonía)	Fertílízers (Urea)
HNO_3 (Nítríc Acíd)	Explosíves, fertilizers
H ₂ SO ₄ (Sulfuríc Acíd)	Industríal chemical, battery acid
CO2 (Carbon Díoxíde)	Refrígerant (dry íce), fíre extínguíshers

	extínguíshers
SíO2 (Sílíca)	Glass, semíconductors
Cl ₂ (Chloríne)	Water purífication, PVC
	manufacture
XeF_2 , XeF_4	Powerful fluorinating agents

Advanced Concepts Inert Paír Effect

- **Definition**: Reluctance of ns² electrons to participate in bonding
- Mechanism:
 - o increased nuclear charge
 - o Relatívistic effects
 - Energy required to promote electrons becomes significant

Díagonal Relatíonshíps

- **Concept**: Símílar propertíes of elements díagonal to each other
- Examples:
 - 0 Lithium and Magnesium
 - o Beryllium and Aluminum
 - o Boron and Sílícon

Final Notes

• P-block elements show a transition from metallic to non-metallic nature as we move from left to right.

The first elements of each group show anomalous behavior due to their small size, high ionization energy, and absence of d-orbitals. Oxidation states and stability vary significantly across the p-block due to the inert pair effect.

1. (JEE Advanced 2019)

\$ Which of the following statements is correct regarding the anomalous behavior of nitrogen in Group 15?

(A) It does not show catenation like phosphorus

- (B) It forms pentahalides like other group 15 elements
- (C) It has the ability to expand its octet
- (D) It shows low electronegativity compared to phosphorus

2. (NEET 2020) \Rightarrow Among the following oxoacids, which one is the strongest acid? (A) H₃PO₂ (B) H₃PO₃ (C) H₃PO₄ (D)/H₄P₂O₇

3. (JEE Maín 2022)

& Which of the following statements is correct regarding fluorine?

(A) It can show positive oxidation states (-1)

(B) It has the highest electron affinity among all halogens

```
(C) It doesn't forms the strongest hydrogen bond among
halogens (HF)
(D) It cannot show disproportionation reactions (-1)
```

4. (JEE Advanced 2018)

$$\Rightarrow$$
 Which of the following species will undergo
disproportionation in an aqueous solution?
(A) ClO_4^-
(B) Ot_2
 $QOTO_2$
(D) Cl^-
 $aclO_4$
 $aclO_4$

5. (NEET 2021)

\$ Which of the following statements is incorrect about noble gases?

(A) They have high ionization enthalpies

(B) Xenon forms stable compounds with fluorine and oxygen

(C) They are monoatomic in nature

(R) They form strong van der Waals forces due to high polarizability

G. (JEE Advanced 2017)
Which one of the following compounds does not exist?
(A) XeO4
(B) XeF6
(C) XeCl4
(D) HeEz

7. (JEE Main 2019) Which of the following is the correct trend for boiling points of noble gases? (A) He < Ne < Ar < Kr < Xe(B) He > Ne > Ar > Kr > Xe(C) He < Ne < Kr < Ar < Xe(D) He > Xe > Kr > Ar > Ne

8. (JEE Advanced 2016)

S Which of the following compounds is not an example of an interhalogen compound?

- $(A) CLF_3$
- (B) BrF₅ (C) IC

