Solutions and Colligative Properties

1. Concentration Terms

A. Molarity (M)

- M = Number of moles of solute/Volume of solution in liters
- M = (Mass of solute × 1000)/(Molecular mass of solute × Volume in mL)
- Temperature dependent
- $M_1V_1 = M_2V_2$ (Dilution formula)

B. Molality (m)

- m = Number of moles of solute/Mass of solvent in kg
- m = (Mass of solute × 1000)/(Molecular mass of solute × Mass of solvent in g)
- Temperature independent

C. Normality (N)

- N = (Molarity × Basicity/Acidity)
- N = Number of gram equivalents/Volume in liters
- For acid-base mixtures:
 - If $V_1N_1 = V_2N_2$: solution is neutral
 - $\circ \quad \text{If } V_1N_1 > V_2N_2\text{: solution is acidic}$
 - $\circ \quad \text{If } V_1N_1 < V_2N_2\text{: solution is basic}$
- Normality of acidic mixture = $(V_1N_1 V_2N_2)/(V_1 + V_2)$
- Normality of basic mixture = $(V_2N_2 V_1N_1)/(V_1 + V_2)$

D. Mole Fraction (x)

- $x_1 = n_1/(n_1 + n_2)$
- For dilute solutions: $x_2 = mM_1/(1000 + mM_1)$
- Sum of all mole fractions = 1

E. Mass Percentage

• Mass % = (Mass of solute/Mass of solution) × 100

F. Volume Percentage

• Volume % = (Volume of solute/Volume of solution) × 100

G. Parts Per Million (ppm)

• ppm = (Mass of solute/Mass of solution) × 10⁶

2. Ionic Strength

- $I = \frac{1}{2}\Sigma C_i Z_i^2$
 - $\circ \quad \text{where } c_i \text{ = molarity of ion} \\$
 - $\circ \quad z_i \text{ = charge on ion} \\$
- For 1:1 electrolyte, I = concentration
- For multivalent ions, I > concentration

3. Vapor Pressure & Raoult's Law

A. Raoult's Law for Volatile Components

- $p(total) = p_1 + p_2 = x_1p_1^{\circ} + x_2p_2^{\circ}$
- For ideal solutions: p₁ = x₁p₁°
- Mole fraction in vapor phase: $y_1 = p_1/(p_1 + p_2)$

B. Raoult's Law for Non-volatile Solutes (Dilute Solutions)

- $(p^{\circ} p_1)/p^{\circ} = n_2/(n_1 + n_2) = x_2$
- Relative lowering = $(p^{\circ} p)/p^{\circ} = x_2$ (for dilute solutions)

4. Colligative Properties & van't Hoff Factor Modifications

A. Relative Lowering of Vapor Pressure ENTLANT COM

- For non-electrolytes: $(p^{\circ} p)/p^{\circ} = x(solute) = n_2/(n_1 + n_2)$
- For electrolytes: $(p^{\circ} p)/p^{\circ} = i \times x(solute)$ where i = van't Hoff factor

B. Elevation in Boiling Point

- For non-electrolytes: $\Delta T(b) = K(b) \times m$
- For electrolytes: $\Delta T(b) = i \times K(b) \times m$
- For partial dissociation: $i = [1 + \alpha(n-1)]$
 - $\Delta T(b) = K(b) \times m \times [1 + \alpha(n-1)]$ Example: For NaCl (complete dissociation): $\Delta T(b) = 2 \times K(b) \times m$ For CaCl₂ (complete dissociation): $\Delta T(b) = 3 \times K(b) \times m$

C. Depression in Freezing Point

- For non-electrolytes: $\Delta T(f) = K(f) \times m$
- For electrolytes: $\Delta T(f) = i \times K(f) \times m$
- For partial dissociation: ΔT(f) = K(f) × m × [1 + α(n-1)] Example: For Al₂(SO₄)₃ (complete dissociation): ΔT(f) = 5 × K(f) × m

D. Osmotic Pressure (π)

- For non-electrolytes: π = CRT = MRT
- For electrolytes: $\pi = iMRT$
- For partial dissociation: π = MRT[1 + α(n-1)] Example: For weak acid HA (α = degree of dissociation): π = MRT[1 + α]

E. van't Hoff Factor (i) Calculations

- 1. For Complete Dissociation:
 - NaCl → Na⁺ + Cl⁻ (i = 2)
 - $CaCl_2 \rightarrow Ca^{2+} + 2Cl^-$ (i = 3)
 - $\circ \quad \mathsf{Al}_2(\mathsf{SO}_4)_3 \to 2\mathsf{Al}^{3*} + 3\mathsf{SO}_4^{2-} \ (\mathsf{i}=\mathsf{5})$
- 2. For Partial Dissociation:
 - $\circ~~i$ = 1 + $\alpha(n-1)$ where: α = degree of dissociation n = number of ions formed after dissociation
- 3. For Association:
 - \circ i = 1 α where: α = degree of association
- 4. Special Cases:
 - For acids: $i = 1 + \alpha$
 - For bases: i = 1 + α
 - For association of x molecules to form 1 molecule: $i = [1 + (1-\alpha)(1/x 1)]$

F. Abnormal Molar Mass Calculations

- 1. Using vapor pressure: $M_2 = (W_2 \times R_1 \times 1000)/(W_1 \times \text{Relative lowering } \times i)$
- 2. Using boiling point elevation: $M_2 = (W_2 \times 1000 \times K(b))/(W_1 \times \Delta T(b) \times i)$
- 3. Using freezing point depression: $M_2 = (W_2 \times 1000 \times K(f))/(W_1 \times \Delta T(f) \times i)$
- 4. Using osmotic pressure: $M_2 = (W_2 \times 1000)/(W_1 \times i)$

6. Mixing Solutions

- For same solute:
 - $\circ \quad M_1V_1 + M_2V_2 = M(V_1 + V_2)$
 - $\circ \quad N_1 V_1 + N_2 V_2 = N(V_1 + V_2)$

7. Special Terms

- Isotonic solutions: Same osmotic pressure at same temperature
- Hypotonic solution: Lower osmotic pressure
- Hypertonic solution: Higher osmotic pressure
- Isosmotic solutions: Same osmotic pressure
- Reverse osmosis: When pressure > osmotic pressure

8. For Chemical Reactions

- $M_1/V_1 \propto M_2/V_2$
 - \circ where n_1 and n_2 are stoichiometric coefficients

9. Non-ideal Solutions

- Positive deviation: p(total) > Raoult's law prediction
- Negative deviation: p(total) < Raoult's law prediction
- Azeotropes: Constant boiling mixtures

