Chemical Kinetics Formula Sheet

Rate of Reaction

1. Rate of Reaction Definitions

- Average rate = $-\Delta[R]/\Delta t = +\Delta[P]/\Delta t$
- Instantaneous rate = -d[R]/dt = +d[P]/dt
- Rate = k[A]^a[B]^b[C]^c (Rate law)
- Units of rate = mol $L^{-1} s^{-1}$

2. Reaction Rate Relations

- $\circ \quad \text{For reaction: aA + bB} \rightarrow \text{cC + dD}$
- Rate = -(1/a)(d[A]/dt) = -(1/b)(d[B]/dt) = (1/c)(d[C]/dt) = (1/d)(d[D]/dt)

Rate Constants

- 1. Units of Rate Constant (k)
 - For zero order: mol L⁻¹ s⁻¹
 - For first order: s⁻¹
 - For second order: L mol⁻¹ s⁻¹
 - General: (mol/L)[^](1-n) s⁻¹ (where n is order)

2. Arrhenius Equation

- k = Ae^(-Ea/RT)
- In k = In A Ea/RT
- $\log k = \log A Ea/2.303RT$
- $\circ \quad k_2/k_1 = e^{-(Ea/R)(1/T_2 1/T_1)]}$

Integrated Rate Laws

- 1. Zero Order Reaction
 - [A]t = [A]₀ kt
 - $t_1/_2 = [A]_0/2k$
 - Graph: [A] vs t is linear with slope = -k

2. First Order Reaction

- In[A]t = In[A]₀ kt
- o [A]t = [A]₀e⁻kt
- \circ t_{1/2} = 0.693/k (ln 2/k)
- Graph: In[A] vs t is linear with slope = -k

3. Second Order Reaction

- o 1/[A]t = 1/[A]₀ + kt
- $\circ t_1/_2 = 1/k[A]_0$
- Graph: 1/[A] vs t is linear with slope = k

Half-Life Relations

1. General Half-Life Formula

- For nth order: $t_1/_2 \propto [A]_0^{(n-1)}$
- $\circ \quad \text{For zero order: } t_1/_2 \And [A]_0$
- $\circ \quad \text{For first order: } t_1/_2 \text{ is constant} \\$
- $\circ \quad \text{For second order: } t_1/_2 \, \simeq \, 1/[A]_0$

Complex Reactions

1. Parallel Reactions

- Total rate = $k_1[A] + k_2[A]$
- $\circ \quad \text{keff} = \mathbf{k}_1 + \mathbf{k}_2$

2. Consecutive Reactions

- $\circ \quad A \to B \to C$
- Rate of formation of $B = k_1[A] k_2[B]$
- Rate of formation of $C = k_2[B]$

3. **Opposing Reactions**

- For $A \rightleftharpoons B$
- At equilibrium: $k_1[A]eq = k_2[B]eq$
- $\circ \quad \text{Keq} = k_1/k_2$

Temperature Dependence

1. Temperature Coefficient

- $\circ \quad \gamma = k_2/k_1 \text{ for } \Delta T = 10^{\circ}C$
- Usually between 2 to 3 for most reactions

2. Activation Energy Relations

- $\Delta H = Ea RT$ (for exothermic)
- $\Delta H = Ea + RT$ (for endothermic)
- Ea(forward) Ea(backward) = ΔH

Collision Theory

1. Rate Expression

- Rate = ZPe^(-Ea/RT)
- Z = Collision frequency
- P = Steric factor
- e^(-Ea/RT) = Boltzmann factor

Pseudo First Order Reactions

- When [B] >> [A], Rate = k[A]^1[B]^1 becomes Rate = k'[A]^1
- Where k' = k[B] (k' is pseudo first order rate constant)

Important Points for JEE Advanced

1. Steady State Approximation

- Rate of formation = Rate of consumption
- \circ $\;$ Used for intermediate species in complex reactions

2. Effect of Catalyst

- \circ $\,$ Decreases Ea equally for forward and backward reactions
- \circ Does not affect ΔH or equilibrium constant
- Provides alternate reaction pathway

3. Surface Area Effects

- \circ Rate \propto Surface area (for heterogeneous catalysis)
- Important for solid-gas and solid-liquid reactions

4. Important Relations

- Slope of ln k vs 1/T plot = -Ea/R
- Slope of log k vs 1/T plot = -Ea/2.303R
- For every 10°C rise in temperature, rate approximately doubles
- $\circ \quad \ln(k_2/k_1) = -(Ea/R)(1/T_2 1/T_1)$

5. Temperature Coefficient

- Temperature coefficient (γ) = k_2/k_1 (for ΔT = 10°C)
- For most reactions: $2 < \gamma < 3$
- \circ Higher Ea \rightarrow Higher temperature coefficient

Catalysis and Catalysts

1. Effect on Reaction Parameters

- Decreases activation energy (Ea)
- Provides alternate reaction pathway
- Does not change:
 - ΔH (enthalpy of reaction)
 - ΔG (Gibbs free energy)
 - Equilibrium constant (K)
 - Position of equilibrium
 - Final composition of mixture

2. Types of Catalysis

• Homogeneous Catalysis

- Catalyst in same phase as reactants
- Example: NO in oxidation of SO₂
- Rate ∝ [Catalyst]
- Heterogeneous Catalysis
 - Catalyst in different phase from reactants
 - Rate ∝ Surface area of catalyst
 - Examples: Pt in Contact Process, Fe in Haber Process

3. Catalyst Characteristics

- Activity
 - Measured by % conversion
 - Depends on strength of intermediate complex
- Selectivity

- Ability to direct reaction to desired products
- Example: Ni in hydrogenation of alkynes vs alkenes

4. Catalyst Poisoning

- Deactivation of catalyst by impurities
- Common poisons: As, Pb, CO (for Pt catalysts)
- Prevention requires pure reactants

5. Promoters

- Substances that increase catalyst activity
- Example: Mo in Fe catalyst for Haber process
- Small quantities significantly enhance activity

6. Energy Profile Diagrams

- Shows lower Ea path with catalyst
- Multiple peaks possible for multi-step mechanisms

• Energy of reactants and products unchanged