Zero Order Reactions

- 1. **[JEE Main 2018]** A zero-order reaction takes 20 minutes for 25% completion. Calculate the time required for 75% completion. *Solution:*
 - For zero order: [A]t = [A]₀ kt
 - 25% completion means [A]t = 0.75[A]₀
 - If $t_1 = 20$ min, then: $0.75[A]_0 = [A]_0 kt_1$
 - o k = 0.0125[A]₀/min
 - For 75% completion: $0.25[A]_0 = [A]_0 kt_2$
 - \circ t₂ = 60 minutes
- 2. **[JEE Main 2015]** The half-life of a zero-order reaction is 50 min at [A]₀ = 0.1 M. Calculate the rate constant. *Solution:*
 - For zero order: $t_1/_2 = [A]_0/2k$
 - 50 = 0.1/(2k)
 - o k = 0.001 M/min

First Order Reactions

- 3. **[JEE Main 2019]** The rate constant for a first-order reaction is $1.54 \times 10^{-3} \text{ s}^{-1}$. Calculate its half-life. *Solution:*
 - \circ t₁/₂ = 0.693/k
 - \circ t_{1/2} = 0.693/(1.54 × 10⁻³)
 - t₁/₂ = 450 s
- 4. **[JEE Main 2016]** A first-order reaction takes 40 min for 30% decomposition. Calculate the time for 60% decomposition. *Solution:*
 - Using: ln([A]₀/[A]t) = kt
 - For 30%: ln(100/70) = k × 40
 - k = 0.0089 min⁻¹
 - For 60%: ln(100/40) = 0.0089 × t
 - t = 102.5 min

Temperature Dependence

- [JEE Main 2017] The activation energy of a reaction is 75.2 kJ/mol. If the temperature increases from 27°C to 37°C, calculate the ratio of rate constants (k₂/k₁). Solution:
 - Using: $\ln(k_2/k_1) = -(Ea/R)(1/T_2 1/T_1)$
 - \circ T₁ = 300K, T₂ = 310K
 - \circ k₂/k₁ = 2.03
- 6. **[JEE Main 2020]** Rate constant doubles when temperature changes from 300K to 310K. Calculate activation energy. *Solution:*
 - In(2) = (Ea/R)(1/300 1/310)
 - Ea = 52.8 kJ/mol

Complex Reactions

- 7. **[JEE Main 2014]** For parallel reactions $A \rightarrow B$ ($k_1 = 0.3 \text{ s}^{-1}$) and $A \rightarrow C$ ($k_2 = 0.1 \text{ s}^{-1}$), calculate the ratio of products [B]/[C] after completion. *Solution:*
 - Rate of B formation = $k_1[A]$
 - Rate of C formation = $k_2[A]$
 - $[B]/[C] = k_1/k_2 = 3$
- 8. **[JEE Main 2013]** In consecutive reactions $A \rightarrow B \rightarrow C$, if $k_1 = 0.2 \text{ s}^{-1}$ and $k_2 = 0.1 \text{ s}^{-1}$, calculate maximum concentration of B relative to initial [A]. *Solution:*
 - $\circ \quad [B]max/[A]_0 = (k_1/(k_2-k_1))(e^{(-k_1t)} e^{(-k_2t)})$
 - Maximum occurs at $t = \ln(k_2/k_1)/(k_2-k_1)$
 - [B]max/[A]₀ = 0.37

Rate Laws and Order

9. [JEE Main 2021] Initial rates for reaction 2A + B → C at different concentrations: [A]₀ (M) | [B]₀ (M) | Initial Rate (M/s) 0.1 | 0.1 | 0.001 0.2 | 0.1 | 0.004 0.1 | 0.2 | 0.002 Find the order with respect to A and B. *Solution:*

- Comparing rows 1&2: Rate ∝ $[A]^2$
- Comparing rows 1&3: Rate ∝ [B]
- Order w.r.t A = 2, B = 1
- Total order = 3
- 10. **[JEE Main 2012]** For reaction A + B → C, when [A] doubles keeping [B] constant, rate quadruples. When [B] doubles keeping [A] constant, rate doubles. Find the rate law. *Solution:*
 - Rate ∝ [A]² from first data
 - Rate ∝ [B] from second data
 - Rate = $k[A]^2[B]$

Half-Life Problems

- 11. **[JEE Main 2016]** A second-order reaction has $t_1/2 = 100$ s when $[A]_0 = 0.1$ M. Calculate $t_1/2$ when $[A]_0 = 0.2$ M. Solution:
 - For second order: $t_1/2 \propto 1/[A]_0$
 - New $t_{1/2} = 50s$
- 12. **[JEE Main 2019]** If three successive half-lives of a first-order reaction are 10, 10, and 10 minutes respectively, what fraction of reactant remains? *Solution:*
 - \circ After each t₁/₂, concentration halves
 - After 3 half-lives: $[A]/[A]_0 = (1/2)^3$
 - Remaining fraction = 0.125

Pseudo First Order

13. **[JEE Main 2017]** Hydrolysis of ester with excess water follows pseudo first-order kinetics. If k' = 2.0 × 10⁻² s⁻¹, calculate t₉₉% (time for 99% completion). *Solution:*

- Using $ln([A]_0/[A]t) = k't$
- In(100/1) = 0.02t
- t = 230s

Catalyst Effects

- 14. **[JEE Main 2015]** A reaction has Ea = 100 kJ/mol. A catalyst reduces it to 60 kJ/mol. Calculate ratio of rate constants at 300K. *Solution:*
 - $\circ k_2/k_1 = e^[(Ea_1-Ea_2)/RT]$
 - \circ k₂/k₁ = e^[40000/(8.314×300)]
 - \circ k₂/k₁ = 3.2 × 10⁷

Integrated Rate Laws

15. **[JEE Main 2020]** Plot of 1/[A] vs time is linear with slope 0.5 M⁻¹s⁻¹. If [A]₀ = 0.1M, calculate time for 80% completion. *Solution:*

- Second order reaction
- 1/[A]t = 1/[A]₀ + kt
- \circ 1/(0.2×0.1) = 1/0.1 + 0.5t
- t = 32s

Mixed Concepts

- 16. **[JEE Main 2014]** A first-order reaction at 300K has k = 2.0 × 10⁻² s⁻¹. Calculate Ea if k doubles at 310K. *Solution:*
 - Using $\ln(k_2/k_1) = -(Ea/R)(1/T_2 1/T_1)$
 - In(2) = (Ea/8.314)(1/300 1/310)
 - Ea = 52.8 kJ/mol
- 17. [JEE Main 2018] For reaction 2NO + O₂ → 2NO₂, initial rates at different concentrations: [NO] (M) | [O₂] (M) | Rate (M/s) 0.1 | 0.1 | 0.001 0.1 | 0.2 | 0.002 0.2 |
 0.4 | 0.001 5ind at a law and law 2s/stime.
 - 0.1 | 0.004 Find rate law and k. *Solution:*
 - Rate \propto [NO]² from rows 1&3
 - Rate ∝ [O₂] from rows 1&2
 - Rate = $k[NO]^2[O_2]$
 - k = 1.0 M⁻²s⁻¹
- 18. **[JEE Main 2016]** A reaction has t_∞% = 230s at 300K and 115s at 310K. Calculate Ea. *Solution:*
 - o t₃₀% ∝ 1/k
 - k₂/k₁ = 230/115 = 2
 - Using Arrhenius equation
 - Ea = 52.8 kJ/mol
- 19. **[JEE Main 2019]** For parallel decomposition $A \rightarrow B$ and $A \rightarrow C$, if 60% of A forms B and 40% forms C, calculate k_1/k_2 . *Solution:*
 - \circ [B]/[C] = k₁/k₂
 - \circ 60/40 = k₁/k₂
 - \circ k₁/k₂ = 1.5

- 20. **[JEE Main 2017]** A reaction follows first order kinetics. Calculate concentration of reactant at time equal to mean life (τ). *Solution:*
 - Mean life $\tau = 1/k$
 - [A] = [A]₀e^(-t/τ)
 - о At t = т, [A] = [A]₀/е
 - [A] = 0.368[A]₀