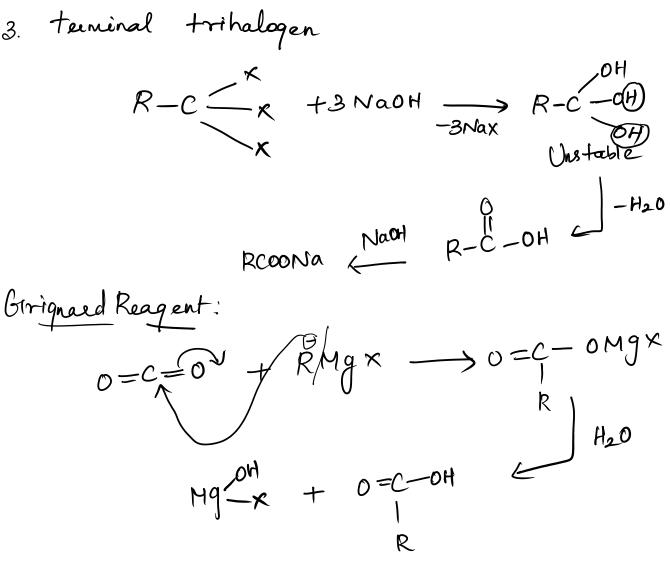

Aldehyde, ketones and Carboxylic acids


1. Aldehydes and Ketones:

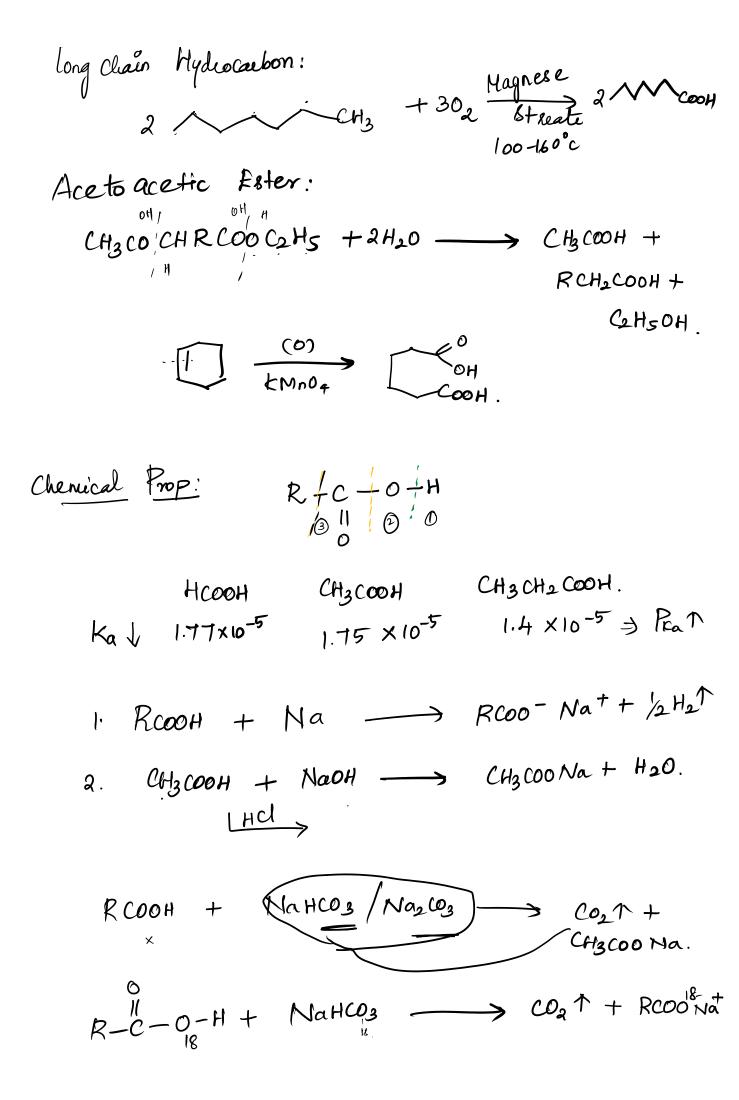
- Nomenclature, structure, and physical properties.
- Conversion between aldehydes, ketones, and carboxylic acids.
- Mechanisms of nucleophilic addition (e.g., Grignard, HCN).
- Key reactions: Aldol condensation, Cannizzaro, Fischer esterification.
- 2. Carboxylic Acids (Detailed Focus):
 - Introduction and Properties
 - Key Reactions of Carboxylic Acids
 - Derivatives of Carboxylic Acids
- 3. Conversion and Comparison of Functional Groups:

Preparation:
Okidation of 1° Alcohol.

$$CH_3 - CH_2 - OH \xrightarrow{CrO_3} CH_3 COOH$$
.
 Q^0 alcohol.
 $CH_3 - CH - CH_3 \xrightarrow{CrO_3} CH_3 - C + CH_3$
 OH
 $H_3 - CH - CH_3 \xrightarrow{CrO_3} CH_3 - C + CH_3$
 OH
 $H_3 - CH - CH_3 \xrightarrow{OH} CH_3 - C + CH_3$
 OH
 $H_3 - CH - CH_3 \xrightarrow{OH} CH_3 - C + CH_3$
 OH
 $H_3 - CH_3 \xrightarrow{OH} CH_3 \xrightarrow{OH} CH_3 - C + CH_3$
 OH
 $H_3 - CH_3 \xrightarrow{OH} CH_3 \xrightarrow{OH} CH_3 \xrightarrow{OH} CH_3$
 $H_3 - CH_3 \xrightarrow{V_2 OH} R - COOH + CH_3$
 $H_3 - CH_3 \xrightarrow{V_2 OH} R - COOH + CH_3$
 $H_3 - CH_3 \xrightarrow{OH} CH_3 \xrightarrow{OH} R - COOH + CH_3$

 $(CH_3)_3 C - CL \xrightarrow{Mg}_{ether} A \xrightarrow{CO_L}_{ether} B.$ $(CH_3)_3 C - MgCl HO - C = 0$ $(CH_3)_3 C - MgCl HO - C = 0$ $C - (CH_3)_3$

I R


Hydeolypics of Ester:

$$^{OH}, H$$

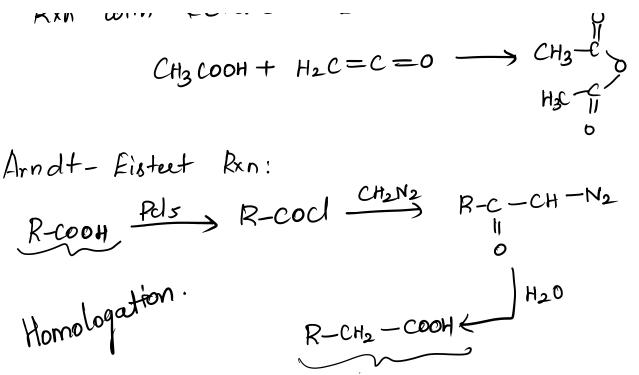
 $RCOOR' + H_2O \longrightarrow RCOOH + R'OH$

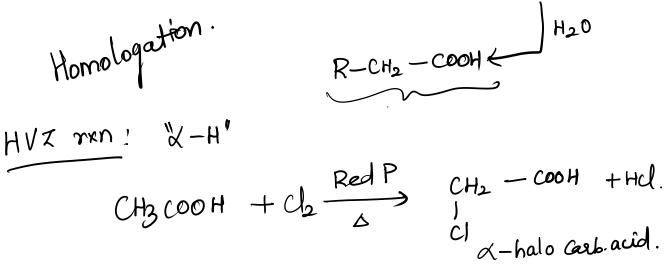
Action of heat $H_{2}C \xrightarrow{COOH} \xrightarrow{\Delta} H_{3}C - COOH$ $H_{3}C - COOH$ $COOC_{2}H_{3}$ R - CH $COOC_{2}H_{3}$ R - CH $COOC_{2}H_{3}$ R - CH $COOC_{2}H_{3}$ R - CH $COOC_{2}H_{3}$ $E_{3} + e_{7}$ $R - CH_{2} - COOH$ $H_{2}O$ $R - CH_{2} - COOH$ $H_{2}O$ $R - CH_{2} - COOH$ $H_{2}O$

Koch reaction:

$$H_2C = CH_2 + CO + H_2O \xrightarrow{H_3POq} CH_3CH_2COOH$$

 $H_2C = CH_2 + CO + H_2O \xrightarrow{Pressure}, 350°C$
long Chain Hydrocarbon:
 $Hagnese = Magnese$




New Section 1 Page 4

(2) Esterification:
(3) Record + R'OH
$$\longrightarrow$$
 R-COOR' + H20.
(4) ROOH + R'OH \longrightarrow R-COOR' + H20.
(5) CH3 COOH + PCls $\xrightarrow{\text{Repridine}}$ CH3CO-Cl + Pocls
(5) CH3 COOH + PCls $\xrightarrow{\text{Repridine}}$ CH3CO-Cl + Pocls
(6) $\xrightarrow{\text{Record}}$ CH3C-Cl + So2T + Hcl T + Hcl.
(7) Pcls $\xrightarrow{\text{CH3}}$ C-Cl + H3P03
(7) R-COGH $\xrightarrow{\text{Repridine}}$ R-C
(7) R-Cd $\xrightarrow{\text{Repridine}}$ R-C
(7) R-CogH $\xrightarrow{\text{Repridine}}$ R-C
(8) R-CogH $\xrightarrow{\text{Repridine}}$ R-C
(8) R-CogH $\xrightarrow{\text{Repridine}}$ R-C
(8) R-CogH $\xrightarrow{\text{Repridine}}$ R-C
(8) R-C

a) Redn: LIAIH4, BH3/THF, RulH2, CuCr204/H2.
R-COOH + H2
$$\xrightarrow{\text{LiAlH4}}$$
 1° OH.

decaeboxylation:
(X:)
$$R-COOH \xrightarrow{\Delta} R-H$$

 $R-C \xrightarrow{-C+L_2} \xrightarrow{COOH} \xrightarrow{\Delta} R-C-C+L_3$
 $0 \xrightarrow{B} - keto acid$.
 $Dry \underline{distillation:}$
 $(R-COO)_2 Ca \xrightarrow{dustrill} R-C-R + Calog$
Hunsdiecker's Reaction.
 $CH_3 cooAg + Br_2 \xrightarrow{CCL_4} CH_3 Br + AgBr + Co_2T$
Schmidt $rxn : N_3H :$
 $RcooH + N_3H \xrightarrow{Conc.H_2SO_4} RNH_2 + Co_2 + N_2.$
 $Rxn with CH_2 N_2 :$
 $Rxn with CH_2 N_2 :$
 $Rxn with ketene: CH_2 = C = O$
 $Rxn with ketene: CH_2 = C = O$

