priod 1 2 3	A State and Stat	Be Bender Darster 24.3050 12 Magazine M	1st ioniz cher electron c	configuration 4	n - 14d 3	1.83 <u>4</u> e <u>e</u> 6		omic number ectronegativi idation state e comes on ba	r akol ty akol othe trans s lonth actin 9	i metals ine metals r metals anoids oids 10	metalloi nonmeti halagen noble g unknow messis p 11	de als s oses n elements n elements renter renter 2	13 10.011 In 6 Based Internet Internet 24.99153 13 Alexendent Alexendent Alexendent	Containe 3 In mass 14 Si Si Si Si	15 14:0047 to 7 Note to 7 Note to 7 Note to 7 10:007005 10:00705 10:0	16 15 Orace 8 Orace 8 Orace 8 Orace 16 State 16 St	17 18.998400 9 F F Currenter 25.453 10 10 10	Ne Ne 28348 18 Ar Apps			
4	K Potessium	Calcure Calcure 10:47 87.62 87.62 38	Condum Condum Condum Condum	17.867 22 Ti 10004m PR 170 91.224 40	S0.9415 23	Chroment ncure 95.96 42	Mn 23804 25	Fe	Cobes 102.9055 45	Netal Notal Notal 105.42 46	Cooper DC 01 100 29	Zn 25.25 250 250 250 250 250 250 250 250 250 2	Ga Salar	Genovan Genovan 118.710 50	Acade 121 760 51	Se 52	Branner 120 904 53	Kypton Mar 200 36 Kypton Mar 200 54			
5	Rb 37	Sr Sr	Y Y Magn	Zr	Nb	Mo	Tc 43	Ru 44	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Internet in a second se	Xe			
6	Castern Castern South State Castern South State South State State South State	137.327 56 Ba Basson	174.9668 71 LU	178.49 72 005 1.30 72 Hff No. 41 10 10	100.9478 73	163.84 1000 1200 74	Re	Os	192.217 77	195.084 193.024 Paterser 194.000	AU Seed	Hg	201,3833 81 711 711 716 80 00 00 00 00 00	Pb	Bi Bi Bi Bi	Po	At Notes	86 Rn			
7	Frankland Bellin	Ra	242) 103 Lr	Rf References	D.J.m.	Sg	204 107 Bh	Hs.	a48 109	arn 110 Ds Derestation	1272) 111 Rg	ISBS 112		Uug	000 115 Uup	(292) 116 Uuh	Uus	12940 118 UUO Ubersetteen			
	notes • as of y officie • a table	electron control est, elemente 113-1 l'ectre designolesi nal - PA-405 el mento con implice son state o con.	by the TUPAC		89 122 0 89 122 0 10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 90 311 10 100 100 100 100 100 100 100 100	N 91 234	d Pr	93 (244)	94 (243)	95 E40	n Bk	97 251	98 0501 ES	99 (257) Fm			R	->)->	AC	1 T

General Characterístics of Transition Elements

Electronic Configuration & Periodic Trends

- Transition elements **incompletely fill d-orbitals**, leading to unique properties.
- Across the period, **atomic and ionic radii decrease** due to increasing nuclear charge.
- Density and hardness increase with atomic number due to stronger metallic bonding.

Variable Oxidation States

- Due to the participation of both (n-1)d and ns electrons in bonding.
- Common oxídatíon states:
 - $\circ Sc \rightarrow +3 \checkmark$ $\circ Ti \rightarrow +2, +3, +4$ $\circ Mn \rightarrow +2, +3, +4, +6, +7$ $\circ Fe \rightarrow +2, +3$ $\circ Cu \rightarrow +1, +2$

Metallic Bonding:

Transition elements exhibit metallic bonding due to their hexagonal

close-packed (hcp), cubic close-packed (ccp), or body-centred cubic (bcc) crystal lattices. This bonding arises from the presence of one or two electrons in the outermost energy level (ns) and unpaired delectrons.

Ionisation Energies:

Ionisation energy generally increases with atomic number, though not in a regular pattern. For 5d-elements, ionisation energies are higher compared to 4d- and 3d-elements due to a greater effective nuclear charge caused by poor shielding by 4f-electrons.

Electrode Potential (E°):

The standard electrode potential, depends on three factors:

- Heat of Sublimation The energy required to convert the solid metal into gaseous atoms.
- **Heat of Ionízation** The energy required to remove electrons from the gaseous metal atoms to form ions.
- Heat of Hydration The energy released when gaseous metal ions dissolve in water to form hydrated ions.

$E^{\circ}(M^{2+}/M)$

High Melting and Boiling Points:

Transition metals have high melting and boiling points because of their strong metallic bonds. The melting point initially increases with atomic number, peaks, and then decreases as the atomic number rises further.

Complex Formation:

Transition metals form numerous complexes due to the availability of vacant d-orbitals, small atomic size, and high charge density.

Magnetic Properties:

These elements are paramagnetic owing to unpaired electrons. The magnetic moment (μ) is determined using the spin-only formula:

$M_s = \sqrt{n(n+2)} BM$

where n is the number of unpaired electrons.

Alloy Formation:

Transition elements form alloys due to their similar atomic radii.

Interstitial Compounds:

They form interstitial compounds by accommodating small atoms in the empty spaces within their crystal lattices.

Table 1: Nature of Transition Metal Oxídes

Meta	l Oxíde			
	Basíc	Amphoteríc	Acídíc	
SC	SC203	-	-	
Tí	ΤίΟ, Τί2Ο3	Tí02	-	22 -
\vee	$\lor O, \lor_2 O_3$	$\vee \mathcal{O}_2$	$\vee_2 \mathcal{O}_5$	723
Cr	CrO	Cr ₂ O ₃ , CrO ₂	CrO3	24
Mn	MnO	Mn_3O_4 , MnO_2	Mn_2O_7) 2
Fe	FeO, Fe2O3, Fe3O4	-	-	
Co	COD	-	-	
Ní	NÍO	-	-	
Си	Си2О, СиО	-	-	
Zn	ZnO	-	-	

Table 2: Relationship Between Oxidation Number and Acidity

Oxíde	MnO	Mn_3O_4	MnO2	Mn_2O_7
Nature	Basíc	Amphoteríc	Amphoteríc	Acídíc

Note: Acídic strength of oxides of a transition metal increases with increase in its oxidation number.

Color of d-Block Elements (Transition Metals)

Reason for Color

The color of d-block elements is due to the d-d electronic transitions within the partially filled d-orbitals.

when light falls on a transition metal ion, some of the light energy

is absorbed to promote an electron from a lower d-orbital to a higher dorbítal (thís is called d-d transition).

The remaining light is transmitted, and we see the complementary VIBBYOR color of the absorbed wavelength.

Color of Some Common d-Block Ions

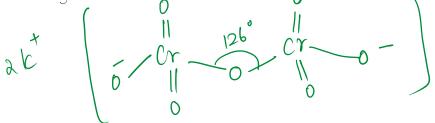
CULUR U S	SOME COMMON N-BLOCK IDES
Ion	Aqueous Solutíon Color
SC ³⁺	Colorless (No d-electrons)
Tí³⁺	Purple
τί ⁴⁺	Colorless (No d-electrons)
V2 +	Víolet
\vee^{3}	Green
V02+	(√ ⁴⁺) Blue
∨ <i>O</i> 3 [−]	(√ ⁵⁺) Yellow
Cr2+	Blue
Cr3+	Green
Cr2072-	(Díchromate) Orange
Cr042-	(Chromate) Yellow
Mn2+	Pale Pínk
Mn042-	Green
MnO ₄ -	(Permanganate)Purple
Fe2+	Green
Fe ³⁺	Yellow/Brown
C02+	Pínk
C03+	Blue
Ní2+	Green
Cu2+	Blue
Z.n2+	Colorless (Full d i0 configuration

Fully (partially Colowiless. Incomplete > Colowid

Colorless ions (Sc³⁺, Ti^{4+} , Zn^{2^+}) have no unpaired electrons and hence no d-d transitions occur.

The observed color is the complementary color of the absorbed light.

O.A.) itself Reduction. tb $K_2C\dot{r}_2O_7$ (Potassium Dichromate) Preparation


- $4 \operatorname{FeCr}_2O_4 + 8\operatorname{Na}_2CO_3 + 7O_2 \rightarrow 8\operatorname{Na}_2CrO_4 + 2\operatorname{Fe}_2O_3 + 8CO_2$
- $2Na_2CrO_4 + H_2SO_4 \rightarrow Na_2Cr_2O_7 + Na_2SO_4 + H_2O_2$

• $Na_2Cr_2O_7 + 2KCl \rightarrow K_2Cr_2O_7 + 2NaCl$

Structure

- Contains the dichromate ion $(Cr_2O_7^{2^-})$
- Two tetrahedral CrO4 units sharing one oxygen atom
- Cr-O-Cr angle is approximately 126°
- Each chromium atom is surrounded by four oxygen atoms in tetrahedral arrangement

Properties

1. Physical Properties:

- o Orange-red crystalline compound
- o Moderately soluble in cold water
- O Freely soluble in hot water

2. Chemical Properties:

- o Thermal Decomposition: $4K_2Cr_2O_7 \rightarrow 4K_2CrO_4 + 2Cr_2O_3 + 3O_2$
- Reaction with Alkali:
 - Changes from orange-red to yellow due to chromate formation
 - $\blacksquare \mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7 + 2\mathsf{K}\mathsf{O}\mathsf{H} \rightarrow 2\mathsf{K}_2\mathsf{Cr}\mathsf{O}_4 + \mathsf{H}_2\mathsf{O}$

• Chromate-Dichromate Equilibrium:

- Interconvertible by changing pH
- Acidification converts yellow chromate to orange dichromate: $2K_2CrO_4 + H_2SO_4 \rightarrow K_2Cr_2O_7 + K_2SO_4 + H_2O$
- Represented by the equilibrium: $2CrO_4^2 + 2H^+ \rightleftharpoons Cr_2O_7^2 + H_2O_{+2}O_$

• Oxídízíng Power:

- Powerful oxidizing agent, especially in acidic medium
- One mole of K2Cr2O7 in dilute H2SO4 provides three moles of nascent oxygen
- $K_2Cr_2O_7 + 4H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + 4H_2O + 3[O]$

$\chi^{(1)}$ KMnO₄ (Potassíum Permanganate)

Preparation

 $\bullet_{3K_{2}MnO_{4}} + 2H_{2}SO_{4} \rightarrow 2KMnO_{4} + MnO_{2} + 2K_{2}SO_{4} + 2H_{2}O_{4}$

Structure

- Contains the permanganate ion (MnO₄⁻)
- Tetrahedral geometry 🗸
- Manganese is either sp³ or sd³ hybridized
- $\begin{array}{c}
 \left| \right| \\
 Mn = 0 \\
 1 \\
 \end{array}$ • Can be considered as a mixture of sp³ and sd³ hybridization

Properties

1. Physical Properties:

- o Dark purple crystalline compound
- o Moderately soluble in water, forming a purple solution
- o Solubility increases with temperature

2. Chemical Properties:

• Thermal Decomposition:

• Decomposes at 200°C: $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$

• Reaction with Alkalis:

• Decomposes upon heating with alkalies: $4 \text{KMnO}_4 + 4 \text{KOH} \rightarrow$ $4K_2MnO_4 + 2H_2O + O_2$

o Oxídízíng Nature:

- Strong oxidizing agent in various media
- In Acídíc Medíum: $2KMnO_4 + 3H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4$ $+ 3H_2O + 5[O] \text{ or: } MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2^+} + 4H_2O$
- In Alkaline Medium: $2KMnO_4 + H_2O \rightarrow 2MnO_2 + 2KOH +$ $3[0] \text{ or: } 2MnO_4^- + H_2O + 3e^- \rightarrow 2MnO_2^+ + 2OH^- + 3[O]$
- In Neutral or Weak Acídíc Solution: $MnO_4^- + 2H_2O + 3e^- \rightarrow$

f-BLOCK ELEMENTS (INNER-TRANSITION ELEMENTS) General Characterístics

- Consísts of two seríes:
 - 1. Lanthanídes (lanthanoíds)
- 2. Actínídes (actínoíds)

Lanthanídes

Electronic Configuration

• General outer electronic configuration: $4f^{1-1412} 5d^{0-1} 6s^2$

Element Details

Element	Atomíc number	Electronic configuration	Oxídatíon states
La	57	[Xe]5d16s2	+3
Се	58	[Xe]4f15d16s2	+3, +4
Pr	59	[Xe]4f36s2	+3, (+4)
Nd	60	[Xe]4f ⁴ 6s ²	(+2), +3, +4
Pm	61	[Xe]4f ⁵ 6s2	+3
SM	62	[Xe]4f ⁶ 6s2	(+2), +3
Εu	63	[Xe]4f ⁷ 6s2	+2, +3
Gd	64	[Xe]4f ⁷ 5d16s2	+3
ть	65	[Xe]4f ⁹ 6s2	+3, +4
Dy	66	[Xe]4f1 ⁰ 652	+3, (+4)
Ho	67	[Xe]4f11652	+3

Er	68	[Xe]4f12652	+3
TM	69	[Xe]4f13652	(+2), +3
Yb	70	[Xe]4f1 ⁴ 6s2	+2, +3
Lu	71	[Xe]4f1 ⁴ 5d16s2	+3

Lanthanide Contraction

- Definition: The decrease in size of atoms and ions with increase in atomic number in the lanthanide series
- Results from poor shielding effect of f-electrons

Consequences of Lanthanide Contraction

1. Chemical Effects:

- o Decrease in basic strength of oxides and hydroxides from Lato Lu \checkmark
- o Símílar chemical properties across the series
- ο Slíght íncrease ín electronegatívíty of trívalent íons from La to Lu
- o Small increase in standard electrode potential values from La to

2. Physical Effects:

- o Decrease in atomic and ionic radii
- o Increase in density
- o Increase in melting and boiling points
- o Enhanced metallic character

General Properties of Actinides

5f¹⁻¹⁴ 6d⁰⁻¹ 75²

- A. Oxidation States
- Multiple oxidation states: Several oxidation states are formed for each of the earlier members of this series
- **Transition element similarity**: Some actinides show great resemblance with elements of the transition series
- Examples:
 - Thorium shows a stable oxidation state of +4 and behaves like elements of Group 4

- O Uranium exhibits an oxidation state of +6 and resembles in many properties with elements of Group 6
- Trend in +3 state: The +3 oxidation state in actinoides becomes increasingly stable as atomic number increases

B. Color and Paramagnetism

- Color origin: Cations of actinides with two or more 5f electrons are colored both in the crystalline state and in aqueous solutions
- Examples:
- Magnetic behavior:
 - Cations of actinides containing only paired electrons are diamagnetic
 - 0 All other ions with unpaired 5f electrons are paramagnetic
- C. Ioníc Sízes
- Actinide contraction: Similar to lanthanide contraction, due to poor shielding of the nuclear charge by 5f-electrons
- Trend: Ionic radii of trivalent cations decrease regularly with increase in atomic number across the series

Reason for Color

The color in f-block elements arises due to f-f electronic transitions within the partially filled f-orbitals.

Since f-electrons are deeply buried inside the atom (not exposed like delectrons), the energy gaps between f-orbitals are smaller.

The color is weaker compared to transition metals.

Color of Some Lanthanide Ions

Ion	Color
La3+	Colorless
Ce ³⁺	Colorless
Ce ⁴⁺	Yellow
Pr3+	Green
Nd3+	Purple
SM3+	Yellow
€u³⁺	Pínk
Gd3+	Colorless
Tb3+	Green

Dy3+	Yellow
H03+	Pínk
Er3+	Pínk
T™3+	Green
Yb3+	Colorless

 La^{3^+} , Ce^{3^+} , Gd^{3^+} , Lu^{3^+} are colorless as they have empty or completely filled f-orbitals.

The colors are not as intense as transition metals because f-f transitions are forbidden by selection rules

III. Differences between Lanthanoids and Actinoids

	Lanthanoíds	Actinoids
1.	They show $+2$ and $+4$	They show higher oxidation states
	oxidation states in few cases	of +4, +5, +6 and +7 besides +
	besídes +3.	3.
2.	Except promethíum, they are non-radíoactíve.	All actinides are radioactive.
3.	They do not form oxo-íons.	They form oxo-íons líke UO2 ²⁺ , PuO2 ²⁺ , UO2 ⁺ etc.
4.	The compounds of lanthanides	Actíníde compounds are more
(-	are less basic.	basíc.
5.	They have less tendency of complex formation.	They have greater tendency of complex formation.

Key Concepts of Transition and Lanthanide Elements

Color of Transition Metal Ions

 Certain metal ions are colorless due to empty d-orbitals, preventing dd transitions. Examples: Sc³⁺, Ti⁴⁺, V⁵⁺, Mn⁷⁺, Cr⁶⁺ → Colorless (No d-d transitions) Some ions exhibit color due to charge transfer spectra:

 $\vee O_2^+ \rightarrow Pale \ Yellow$

- $CrO_4^2 \rightarrow Deep$ Yellow
- $MnO_4^- \rightarrow Intense Purple$
- Wilkinson's Catalyst

 $MnO_4 \rightarrow Intense Purple$

Wilkinson's Catalyst

[RhCl(PPh3)3] is known as Wilkinson's catalyst, featuring square planar geometry and widely used in the hydrogenation of alkenes.

• Oxidation States of Transition Elements

The highest oxidation state found in a transition element is +8. Lower oxidation states (+2 and +3) tend to form ionic bonds, while higher oxidation states form covalent bonds.

Transítion metals can also exhibit low oxidation states like 0 and +1.

• Biological Importance of Transition Elements

Eleme	Bíologícal Role
nt	
Fe	Hemoglobín (Oxygen transport ín blood), Myoglobín
	(Oxygen storage in muscles)
Си	Plastocyanín, Haemocyanín
Co	Vítamín B ₁₂
Zn	Carboníc Anhydrase

- Metallurgical and Industrial Applications
- Annealing: Heating steel to red-hot and cooling slowly makes it soft.
- **Tempering:** Rapid cooling of heated steel (e.g., by plunging in icecold water) makes it hard and brittle.
- Extraction of Silver from Coins/Ornaments
- Díssolution:

Coins (Ag-Cu alloy) are dissolved in HNO3, forming metal nitrates. Separation:

Boiling removes excess HNO₃, and treatment with HCl precipitates AgCl, leaving Cu^{2^+} in solution.

• Reduction of AgCl to Silver:

```
\begin{array}{l} \operatorname{Agcl} + \operatorname{H}_2 \to \operatorname{Ag} + \operatorname{Hcl} \\ \operatorname{Agcl} + \operatorname{2Na_2CO_3} \to \operatorname{4Ag} \downarrow + \operatorname{4Nacl} + \operatorname{2CO_2} + \operatorname{O_2} \\ \operatorname{2Agcl} + \operatorname{2NaOH} \to \operatorname{Ag_2O} + \operatorname{2Nacl} + \operatorname{H_2O} \\ \operatorname{Ag_2O} + \operatorname{C_6H_{12}O_6} \to \operatorname{2Ag} \downarrow + \operatorname{C_6H_{12}O_7} (\operatorname{Glucose} \to \operatorname{Gluconic} \operatorname{Acid}) \end{array}
```

• Purification:

The extracted silver is purified by electrolysis.

Oxídízíng and Reducing Agents

Ce⁴⁺ solutions act as strong oxidizing agents.

 Eu^{2^+} and Yb^{2^+} are strong reducing agents in aqueous solutions.

• Properties of Lanthanides

Paramagnetísm: All lanthaníde íons (except La³⁺, Lu³⁺, Ce⁴⁺) are paramagnetíc.

Complex Formation:

 $({\rm NH}_3)_6{\rm Cr}{\rm O}_4$ (formed in ammoniacal solution of ${\rm K}_2{\rm Cr}_2{\rm O}_7)$ is dark red-brown due to ${\rm Cr}({\rm IV}).$

Industrial Uses:

Lanthanum oxídes are used for políshing glass.

Neodymíum & Praseodymíum oxídes are used ín making colored glass for goggles (absorbíng yellow sodíum líght, useful for glassblowers.

• Catalytic Applications:

- Lanthanídes serve as catalysts in hydrogenation, dehydrogenation, etc.
- Medical Use:
- Thorium salts are used in cancer treatment.
- Transition and Non-Transition Elements
- \bullet All transition elements belong to the d-block, but Zn, Cd, and Hg are not considered true transition elements due to their full d i0 configuration.

• Color and Stability of Salts

• FeSO₄ and CuSO₄ appear white in the anhydrous state because of the absence of crystal field splitting, despite having unpaired electrons.

• Stability of Copper Ions:

- $Cu^{2^+}(3d^9)$ is more stable than $Cu^+(3d^{10})$ in aqueous solutions:
- $E^{\circ}(Cu^{2^{+}}/Cu) = 0.34 \vee$, while $E^{\circ}(Cu^{+}/Cu) = 0.54 \vee$.
- Cu⁺ is more stable in presence of large anions.
- Cut is more stable than Cut_2 , and CuCN is more stable than $Cu(CN)_2$.

- Interesting Facts
- Tungsten (W, Atomíc No. 74) has the highest melting point (3410° C).
- Mercury (Hg, Atomíc No. 80) has the lowest melting point (-38.9°C) among d-block elements.
- Technetium (Tc, Atomic No. 43) was the first artificially created element.

JEE Main Questions
Question 1 (JEE Main 2019)
The correct order of magnetic moments (spin only values in B.M.)
among the following ions is:
(a)
$$Mn^{2^+} > Cr^{3^+} > Fe^{3^+} > Ti^{3^+}$$

(b) $Ti^{3^+} > Cr^{3^+} > Fe^{3^+} > Mn^{2^+}$
(c) $Fe^{3^+} > Mn^{2^+} > Cr^{3^+} > Ti^{3^+}$
(d) $Mn^{2^+} > Fe^{3^+} > Cr^{3^+} > Ti^{3^+}$
(c) $Fe^{3^+} - 3d^3 + Cr^{3^+} = 535$
 $= \sqrt{5}(5^+)^2 = 535$
 $= \sqrt{5}(7^2 + - 3d^4) + 45^{\circ}$
 $Ti^{3^+} - 3d^4 + 45^{\circ}$

Question 3 (JEE Main 2021)
The oxidation states of chromium in
$$\kappa_3[Cr(C_2O_4)_3]$$
 and $\kappa_2[CrO_4]$ are
respectively:
(a) +6 and +6
(b) +3 and +6
(c) +6 and +3
 $2 + 2 - 6 = 0$

New Section 1 Page 13

$$\begin{array}{c} (b) + 3 \ and + 6 \\ (c) + 6 \ and + 3 \\ (d) + 3 \ and + 3 \end{array} \qquad 3(+1) + \chi - 6 = 0 \\ (d) + 3 \ and + 3 \end{array} \qquad 3 + \chi - 6 = 0 \\ \chi = + 6 - 3 \\ \chi = + 6 - 3 \\ \chi = + 8 - 2 \\ \chi = + 8 - 2 \\ \chi = + 6 \end{array}$$

JEE Advanced Questions
Question 4 (JEE Advanced 2018)
Among the following, the number of compounds that liberate
$$CO_2$$
 on
treatment with dilute acid is: K_2CO_3 , Na_2O_2 , $Fe_2(CO_3)_3$, BaO_2 , CaO ,
 Mn_2O_3 (a) (b) 3 (c) 4 (d) 5

Question 6 (JEE Advanced 2017)

Identify the correct statements from the following:

(a) The lanthanide contraction is responsible for the fact that the atomic radii of Zr and Hf are almost identical

(b) The actinides exhibit more oxidation states than the lanthanides (c) In the lanthanide series, the ionic radius of Eu^{2^+} is larger than that of La^{3^+}

(In I authoridan Lawa and and inter honours of norther filled for whitele

In the landhuma series, the conic rulius of the is larger than

that of La³⁺ (a) Lanthanides form colored ions because of partly filled f-orbitals

Question 7 (JEE Advanced 2020)

Which of the following statements is/are correct?
(a) Ce⁴⁺ ion is a good oxidizing agent
(b) Eu²⁺ ion is a good reducing agent
(c) The magnetic moment of Gd³⁺ is higher than that of Eu³⁺
(d) The basicity of Ln (OH)³ decreases from La to Lu

Question 8 (JEE Advanced 2021)

When MnO_4^- reacts with SO_2 in acidic medium, the oxidation state of Mn changes from: (a) +7 to +2 (b) +7 to +4 (b) +4 to +7 (d) +4 to +2

 $+7 to +4 \otimes +4 to +7 to 7$ $+7 to +4 \otimes +4 to +7 to 7$ $+120 \longrightarrow Mn^{2+} + 550q^{2+} + 4H^{+}$