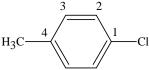

PART II: CHEMISTRY

SECTION 1 [Maximum Marks: 28]

- This section contains **SEVEN** questions
- Each question has **FOUR** options [A], [B], [C] and [D]. **ONE OR MORE THAN ONE** of these four options is (are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS
- For each question, marks will be awarded in <u>one of the following categories:</u>

	Full Marks	: +4	If only the bubble(s) corresponding to all the correct option(s) is (are) darkened
	Partial Marks	: +1	For darkening a bubble corresponding to each correct option, provided NO
			incorrect option is darkened.
	Zero Marks	: 0	If none of the bubbles is darkened
	Negative Marks	: -2	In all other cases
•	For example, if	[A], [C]	and [D] are all the correct options for a question, darkening all these three will

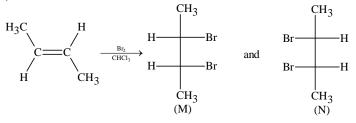

- For example, if [A], [C] and [D] are all the correct options for a question, darkening all these three will result in +4 marks; darkening only [A] and [D] will result in +2 marks; and darkening [A] and [B] will result in -2 marks, as a wrong option is also darkened.
- *Q.19 The IUPAC name(s) of the following compound is(are)

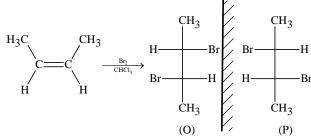
[A] 4-methylchlorobenzene[C] 1-chloro-4-methylbenzene

[B] 4-chlorotoluene[D] 1-methyl-4-chlorobenzene

Sol. A, B, C

*Q.20 The correct statement(s) for the following addition reactions is(are)


(i)
$$H \xrightarrow{H_3C} H \xrightarrow{H} Br_2/CHCl_3 \longrightarrow M \text{ and } N$$


(ii)
$$H_3C$$
 CH_3 $Br_2/CHCl_3 \rightarrow O \text{ and } P$
 H H

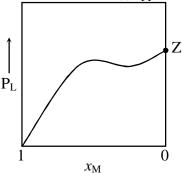
[A] (M and O) and (N and P) are two pairs of diastereomers

[B] Bromination proceeds through *trans*-addition in both the reactions

- [C] **O** and **P** are identical molecules
- [D] (M and O) and (N and P) are two pairs of enantiomers

(M and O) and (N and P) have no mirror image relationship. Hence these two pairs are diastereomers. Bromination proceeds through trans-addition in both the reactions.

Q.21 Addition of excess aqueous ammonia to a pink coloured aqueous solution of $MCl_{2.6}H_2O(X)$ and NH_4Cl gives an octahedral complex Y in the presence of air. In aqueous solution, complex Y behaves as 1 :3 electrolyte. The reaction of X with excess HCl at room temperature results in the formation of a blue coloured complex Z. The calculated spin only magnetic moment of X and Z is 3.87 B.M., whereas it is zero for complex Y.


Among the following options, which statement(s) is(are) correct?

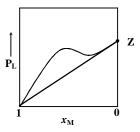
- [A] The hybridization of the central metal ion in \mathbf{Y} is d^2sp^3
- [B] **Z** is a tetrahedral complex
- [C] Addition of silver nitrate to Y gives only two equivalents of silver chloride
- [D] When **X** and **Z** are in equilibrium at 0° C, the colour of the solution is pink

Sol. A, B, D

$$\begin{bmatrix} \operatorname{Co}(\operatorname{H}_{2}\operatorname{O})_{6} \end{bmatrix} \operatorname{Cl}_{2} \xrightarrow{\operatorname{Aq.NH}_{3} + \operatorname{NH}_{4}\operatorname{Cl}}_{\operatorname{air}} \begin{bmatrix} \operatorname{Co}(\operatorname{NH}_{3})_{6} \end{bmatrix} \operatorname{Cl}_{3} \xrightarrow{(X)}_{(\mu=0)} \\ \begin{bmatrix} \operatorname{Co}(\operatorname{H}_{2}\operatorname{O})_{6} \end{bmatrix}^{2^{+}} + \operatorname{HCl}(\operatorname{excess}) \xrightarrow{\underbrace{\operatorname{O}^{\circ}\operatorname{C}}}_{\operatorname{terahedral(blue)}} \begin{bmatrix} \operatorname{CoCl}_{4} \end{bmatrix}^{2^{-}}_{(\mu=3.87 \text{ B.M.})}, \quad \Delta H = + \operatorname{ve}$$

Q.22 For a solution formed by mixing liquids **L** and **M**, the vapour pressure of **L** plotted against the mole fraction of **M** in solution is shown in the following figure. Here x_L and x_M represent mole fractions of **L** and **M**, respectively, in the solution. The correct statement(s) applicable to this system is(are)

[A] Attractive intermolecular interactions between L-L in pure liquid L and M-M in pure liquid M are stronger than those between L-M when mixed in solution


[B] The point **Z** represents vapour pressure of pure liquid **M** and Raoult's law is obeyed when $x_L \rightarrow 0$

[C] The point Z represents vapour pressure of pure liquid L and Raoult's law is obeyed when $x_L \rightarrow 1$

[D] The point **Z** represents vapour pressure of pure liquid **M** and Raoult's law is obeyed from $x_L = 0$ to $x_L = 1$

Sol. A, C

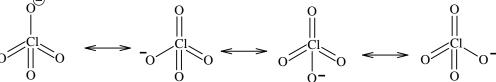
From graph it is clear that there is +ve deviation w.r.t L. Therefore option A is correct. When $x_L \rightarrow 1$, then Z will have value equal to P_L^0 (vapour pressure of pure L). Therefore option C is also correct.

*Q.23 An ideal gas is expanded from (p_1, V_1, T_1) to (p_2, V_2, T_2) under different conditions. The correct statement(s) among the following is(are)

[A] The work done on the gas is maximum when it is compressed irreversibly from (p_2, V_2) to (p_1, V_1) against constant pressure p_1

[B] The work done by the gas is less when it is expanded reversibly from V_1 to V_2 under adiabatic conditions as compared to that when expanded reversibly from V_1 to V_2 under isothermal conditions

[C] The change in internal energy of the gas is (i) zero, if it is expanded reversibly with $T_1 = T_2$, and (ii) positive, if it is expanded reversibly under adiabatic conditions with $T_1 \neq T_2$


[D] If the expansion is carried out freely, it is simultaneously both isothermal as well as adiabatic

Sol. A, B, D

- Q.24 The correct statement(s) about the oxoacids, HClO₄ and HClO, is(are)
 - [A] HClO₄ is more acidic than HClO because of the resonance stabilization of its anion
 - [B] HClO₄ is formed in the reaction between Cl_2 and H_2O
 - [C] The central atom in both HClO₄ and HClO is *sp*³ hybridized

[D] The conjugate base of HClO₄ is weaker base than H₂O

Conjugate base of HClO₄ has four canonical structures.

 \Rightarrow The central atoms Cl in HClO₄ and O in HOCl respectively are sp³ hybridized.

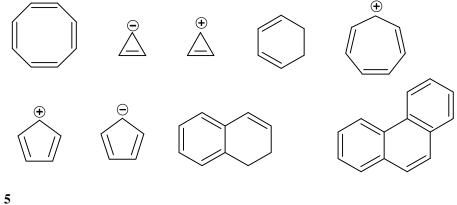
- \Rightarrow HClO₄ is stronger acid than H₃O⁺, so ClO₄⁻ is weaker base than H₂O.
- Q.25 The colour of the X₂ molecules of group 17 elements changes gradually from yellow to violet down the group. This is due to
 - [A] the physical state of X₂ at atom temperature changes from gas to solid down the group
 - [B] decrease in HOMO-LUMO gap down the group
 - [C] decrease in $\pi^*-\sigma^*$ gap down the group
 - [D] decrease in ionization energy down the group

Sol. B, C

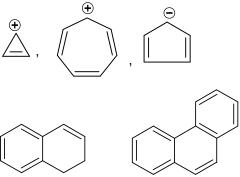
Highest occupied molecular orbital (HOMO) $\Rightarrow \pi^*$ Lowest unoccupied molecular orbital (LUMO) $\Rightarrow \sigma^*$ On descending the group gap between π^* and σ^* decreases.

SECTION – 2 [Maximum Marks: 15]

- This section contains **FIVE** questions.
- The answer to each question is a **SINGLE DIGIT INTEGER** ranging from 0 to 9, both inclusive.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in <u>one of the following categories</u>: *Full Marks* :+3 If only the bubble corresponding to the correct answer is darkened. *Zero Marks* :0 In all other cases.
- *Q.26 Among H_2 , He_2^+ , Li_2 , Be_2 , B_2 , C_2 , N_2 , O_2^- , and F_2 , the number of diamagnetic species is (Atomic numbers: H = 1, He = 2, Li = 3, Be = 4, B = 5, C = 6, N = 7, O = 8, F = 9)


Sol.

6


H₂, Li₂, Be₂, C₂, N₂ and F₂ are diamagnetic species.

* However because Be_2 does not exits the answer may well be 5

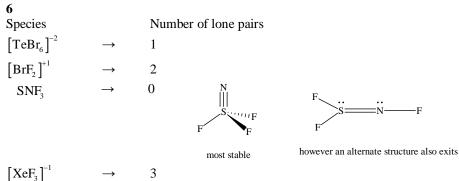
*Q.27 Among the following, the number of aromatic compound(s) is

Sol.

Q.28 The conductance of a 0.0015 M aqueous solution of a weak monobasic acid was determined by using a conductivity cell consisting of platinized Pt electrodes. The distance between the electrodes is 120 cm with an area of cross section of 1 cm². The conductance of this solution was found to be 5×10^{-7} S. The pH of the solution is 4. The value of limiting molar conductivity (Λ_m^o) of this weak monobasic acid in aqueous solution is $Z \times 10^2$ S cm⁻¹ mol⁻¹. The value of Z is

6

$$\kappa = \mathbf{G} \times \frac{\ell}{a}$$


$$\kappa = 5 \times 10^{-7} \times \frac{120 \text{ cm}}{1 \text{ cm}^2} = 6 \times 10^{-5} \text{ S cm}^{-1}$$

$$\Lambda_{\rm m}^{\rm C} = \frac{\kappa \times 1000}{\rm C} = \frac{6 \times 10^{-5} \times 1000}{0.0015}$$

pH = 4, [H⁺] = 10⁻⁴ = Ca
$$\alpha = \frac{10^{-4}}{0.0015}$$

$$\alpha = \frac{\Lambda_{\rm m}^{\rm C}}{\Lambda_{\rm m}^{\rm o}}$$

$$\frac{10^{-4}}{0.0015} = \frac{6 \times 10^{-5} \times 1000}{0.0015 \times \Lambda_{\rm m}^{\rm o}}$$

$$\Lambda_{\rm m}^{\rm 0} = 6 \times 10^{2}$$

Z = 6

Q.29 The sum of the number of lone pairs of electrons on each central atom in the following species is $[\text{TeBr}_6]^{2^-}, [\text{BrF}_2]^+, \text{SNF}_3, \text{ and } [\text{XeF}_3]^-$

(Atomic numbers : N = 7, F = 9, S = 16, Br = 35, Te = 52, Xe = 54)

Sol.

: Sum is =
$$1 + 2 + 0 + 3 = 6$$
 lone pair

Q.30 A crystalline solid of a pure substance has a face-centred cubic structure with a cell edge of 400 pm. If the density of the substance in the crystal is 8 g cm⁻³, then the number of atoms present in 256 g of the crystal is $N \times 10^{24}$. The value of N is

2

$$d = \frac{Z \times M}{N_A \times a^3}$$

$$8 = \frac{4 \times M}{6.022 \times 10^{23} \times (400 \times 10^{-10})^3}$$

$$M = 76.8 \text{ g mol}^{-1}$$

$$76.8 \text{ g contain} = 6 \times 10^{23} \text{ atoms}$$

$$\therefore 256 \text{ g will contain} = 20 \times 10^{23} \text{ atoms}$$

$$= 2 \times 10^{24} \text{ atoms}$$

$$\therefore N = 2$$

SECTION 3 (Maximum Marks: 18)					
• This section contains SIX questions					
• The section contains TWO tables (each having 3 columns and 4 rows)					
• Based on each table, there are THREE questions					
• Each question has FOUR options [A], [B], [C], and [D]. ONLY ONE of these four options is correct					
• For each question, darken the bubble corresponding to the correct option in the ORS					
• For each question, marks will be awarded in <u>one of the following categories</u> :					
<i>Full Marks</i> : +3 If only the bubble corresponding to the correct option is darkened					
Zero Marks : 0 If none of the bubbles is darkened					
Negative Marks : - 1 In all other cases					

Answer Q. 31, Q. 32 and Q. 33 by appropriately matching the information given in the three columns of the following table.

The wave function	w is a mathematical function	n whose value depends upon spherical polar					
The wave function	The wave function ψ_{nl,m_l} is a mathematical function whose value depends upon spherical polar						
coordinates (r, θ , ϕ	coordinates (r, θ, ϕ) of the electron and characterized by the quantum numbers n, l and m_l . Here r is						
distance from nucles	distance from nucleus, θ is colatitude and ϕ is azimuth. In the mathematical functions given in the Table,						
Z is atomic number	Z is atomic number and a_0 is Bohr radius.						
Column 1	Column 2	Column 3					
(I) 1s orbital	(i) $\psi_{n,l,m_l} \propto \left(\frac{Z}{a_0}\right)^{\frac{3}{2}} e^{-\left(\frac{Zr}{a_0}\right)}$	(P) $\psi_{nlm}(r)$ 0 $r/a_0 \rightarrow$					
(II) 2s orbital	(ii) One radial node	(Q) Probability density at nucleus $\propto \frac{1}{a_0^3}$					
(III) 2p _z orbital	(iii) $\psi_{n,l,m_l} \propto \left(\frac{Z}{a_0}\right)^{\frac{5}{2}} r e^{\left(\frac{Zr}{2a_0}\right)} \cos\theta$	(R) Probability density is maximum at nucleus					
(IV) $3d_z^2$ orbital	(iv) <i>xy</i> -plane is a nodal plane	(S) Energy needed to excite electron from					
× / Z		$n = 2$ state to $n = 4$ state is $\frac{27}{32}$ times the energy					
		needed to excite electron from $n = 2$ state to					
		n = 6 state					

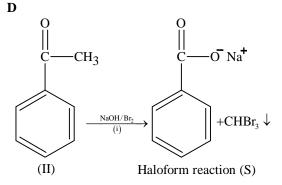
*Q.31 For the given orbital in Column 1, the only CORRECT combination for any hydrogen-like species is [A] (IV) (iv) (R) [B] (II) (ii) (P) [C] (III) (iii) (P) [D] (I) (ii) (S)

Sol.

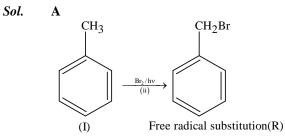
B

 $2s \hspace{0.1 cm} \underset{(II)}{orbital-} One \hspace{0.1 cm} radial \hspace{0.1 cm} \underset{(ii)}{node} \big(n-\ell-1\big)$

$$\psi_{n,l,m_l}(r)$$


*Q.32	For He ⁺ ion, the only	INCORRECT combination is	6	
	[A] (II) (ii) (Q)	[B] (I) (i) (S)	[C] (I) (i) (R)	[D] (I) (iii) (R)
Sol.	D 1s orbital can not hav Therefore D is incom	ve θ function (angular function) rect.		
*Q.33	For hydrogen atom, t	he only CORRECT combination	on is	
	[A] (I) (iv) (R)	•	[C] (II) (i) (Q)	[D] (I) (i) (S)
Sol.	D			
	For H-atom:			
	ls orbital- $\Psi_{n\ell m} \propto \left(\frac{1}{2}\right)$	$\frac{Z}{a_0}\right)^{3/2} e^{-\left(\frac{Zr}{a_0}\right)}, S$		
	$E_4 - E_2 = -\frac{13.6}{16} - \left(-\frac{13.6}{16} - \frac{13.6}{16}\right)$	$\left(-\frac{13.6}{4}\right) = \frac{3 \times 13.6}{16}$		
	$E_6 - E_2 = -\frac{13.6}{36} - \left(-\frac{13.6}{36} - \frac{13.6}{36}\right)$	$\left(-\frac{13.6}{4}\right) = \frac{8 \times 13.6}{36}$		

$$E_4 - E_2$$
 is $\frac{27}{32}$ times of $E_6 - E_2$


Answer Q. 34, Q. 35 and Q. 36 by appropriately matching the information given in the three columns of the following table.

Columns 1, 2 and 3 contain starting materials, reaction conditions, and type of reactions, respectively.						
Column 1	Column 2	Column 3				
(I) Toluene	(i) NaOH/Br ₂	(P) Condensation				
(II) Acetophenone	(ii) Br ₂ /hv	(Q) Carboxylation				
(III) Benzaldehyde	(iii) (CH ₃ CO) ₂ O/CH ₃ COOK	(R) Substitution				
(IV) Phenol	(iv) NaOH/CO ₂	(S) Haloform				

Sol.

 $Q.35 \quad \begin{array}{cc} \text{The only CORRECT combination in which the reaction proceeds through radical mechanism is} \\ \text{[A] (I) (ii) (R)} \quad \text{[B] (II) (iii) (R)} \quad \text{[C] (III) (ii) (P)} \quad \text{[D] (IV) (i) (Q)} \end{array}$

Sol.

Q.36The only CORRECT combination that gives two different carboxylic acids is
[A] (IV) (iii) (Q)[B] (III) (iii) (P)[C] (II) (iv) (R)[D] (I) (i) (S)

B OH 0 0 0 Д Н CH₂ ·CH₃ (CH₃CO)₂O, CH₃COOK (iii) Perkin condensation(P) (III) H_3O^+ ۷ -OH HC= =CH-Ö 0 H₃C OH + C Acetic acid Cinnamic acid