PART II-CHEMISTRY

SECTION 1 (Maximum Marks: 32)

This section contains **EIGHT** (08) questions.

- •Each question has **FOUR** options for correct answer(s). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct option(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks: +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks: +2 If three or more options are correct but ONLY two options are chosen, both of which are correct options.

Partial Marks: +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks: **0** If none of the options is chosen (i.e. the question is unanswered).

Negative Marks: -1 In all other cases.

• For Example: in a question, If (A), (B) and (D) are the ONLY three options corresponding to correct answers, then choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2 marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

Choosing no option (i.e. the question is unanswered) will get 0 marks; and choosing any other combination of options will get -1 mark.

*Q.1. Choose the correct option(s) that give(s) an aromatic compound as the major product

A. Br

NaOEt

B. NaOMe

C.
$$+ Cl_2 (excess) \xrightarrow{UV, 500 \text{ K}}$$

D. H_3C

Br

 $i) \text{ alc. KOH}$
 $ii) \text{ NaNH}_2$
 $iii) \text{ red hot iron tube, 873 K}$

$$(B) \qquad \qquad \stackrel{\text{NaOEt}}{\longrightarrow} \qquad (B)$$

$$H_3C \longrightarrow Br \xrightarrow{\text{(i) alc. KOH} \atop \text{(ii) NalNH}_2} H_3C \longrightarrow C \Longrightarrow CH \xrightarrow{\text{Red hot iron tube} \atop 873 \text{ K}}$$

2. Consider the following reactions (unbalanced)

$$Zn + hot conc. H_2SO_4 \longrightarrow G + R + X$$

$$Zn + conc.NaOH \longrightarrow T + Q$$

$$G + H_2S + NH_4OH \longrightarrow Z(a \text{ precipitate}) + X + Y$$

Choose the correct option(s)

- A. The oxidation state of Zn in T is +1
- B. R is a V-shaped molecule
- C. Z is dirty white in colour
- D. Bond order of Q is 1 in its ground state

Sol. B, C, D

$$Zn + \underset{(\text{hot \& conc.})}{H_2SO_4} \xrightarrow{\hspace*{1cm}} ZnSO_4 + SO_2 + \underset{(R)}{H_2O}$$

$$\begin{tabular}{ll} Zn + conc. & NaOH & \longrightarrow Na_2 ZnO_2 + H_2 \\ (T) & (Q) \end{tabular}$$

$$ZnSO_4 + H_2S + 2NH_4OH(aq.) \longrightarrow ZnS_{(2)} \downarrow + (NH_4)_2 SO_4 + 2H_2O_{(X)}$$

*Q.3. Which of the following reactions produce(s) propane as a major product?

A.
$$H_3C$$
 COONa NaOH, CaO, Δ

B.
$$H_3C$$
 Cl $Zn, dil. HCl$

Sol. A, B

$$H_3C$$
 $COONa$
 $NaOH, CaO, \Delta$
 $NaOH, CaO, \Delta$

4. Choose the correct option(s) from the following:

- A. Cellulose has only α-D-glucose units that are joined by glycosidic linkages
- B. Teflon is prepared by heating tetrafluoroethene in presence of a persulphate catalyst at high pressure
- C. Natural rubber is polyisoprene containing *trans* alkene units
- D. Nylon-6 has amide linkages

Sol. B, D

- *Q.5. The ground state energy of hydrogen atom is -13.6 eV. Consider an electronic state ψ of He⁺ whose energy, azumuthal quantum number and magnetic quantum number are -3.4 eV, 2 and 0, respectively. Which of the following statement(s) is(are) true for the state ψ ?
 - A. It is a 4d state
 - B. It has 2 angular nodes
 - C. It has 3 radial nodes
 - D. The nuclear charge experienced by the electron in this state is less than 2e, where e is the magnitude of the electronic charge
- Sol. A, B

$$-3.4 = \frac{-13.6 \times 2^2}{n^2}$$

$$n = 4$$

$$\ell = 2$$

Subshell = 4d

Angular nodes = $\ell = 2$

Radial nodes = $n - \ell - 1 = 4 - 2 - 1 = 1$

- 6. The cyanide process of gold extraction involves leaching out gold from its ore with CN⁻ in the presence of Q in water to form R. Subsequently, R is treated with T to obtain Au and Z. Choose the correct option(s)
 - A. Z is $\left[Zn(CN)_4\right]^{2-}$
 - B. T is Zn
 - C. R is $\left[Au(CN)_4 \right]^{-1}$
 - D. Q is O_2
- Sol. A, B, D

$$Au \xrightarrow{CN^-, Q} R \xrightarrow{T} Au + Z$$

$$Au + 2CN^- + O_2 \longrightarrow [Au(CN)_2]^-$$

$$\left[\operatorname{Au}\left(\operatorname{CN}\right)_{2}\right]^{-} + \operatorname{Zn} \longrightarrow \operatorname{Au} + \left[\operatorname{Zn}\left(\operatorname{CN}\right)_{4}\right]^{-2}$$

- 7. With reference to *aqua regia*, choose the correct option(s)
 - A. The yellow colour of aqua regia is due to the presence of NOCl and Cl₂
 - B. Aqua regia is prepared by mixing conc. HCl and conc. HNO₃ in 3:1 (v/v) ratio
 - C. Reaction of gold with aqua regia produces an anion having Au in +3 oxidation state
 - D. Reaction of gold with aqua regia produces NO2 in the absence of air
- Sol. A, C

$$Au + HNO_3 + 3HCl \longrightarrow HAuCl_4 + NO + H_2O$$

Yellow colour of aqua – regia is due to NOCl and Cl₂.

In aqua regia HCl and HNO₃ are in 3:1 molar ratio

8. Choose the correct option(s) for the following reaction sequence

$$\begin{array}{c} \text{CHO} \\ \\ \frac{\text{i) } \text{Hg}^{2^{+}}, \text{ dil.} \text{H}_{2} \text{SO}_{4}}{\text{ii) } \text{AgNO}_{3}, \text{NH}_{4} \text{OH}} \xrightarrow{\text{ii) } \text{SOCl}_{2}} \text{Pyridine} \\ \frac{\text{ii) } \text{AgNO}_{3}, \text{NH}_{4} \text{OH}}{\text{iii) } \text{Zn-Hg}, \text{conc. HCl}} \\ \end{array} \\ Q \xrightarrow{\text{pyridine}} R \xrightarrow{\text{conc. HCl}} S$$

Consider Q, R and S as major products

A.
$$CO_2H$$
 Q R

C.
$$OH$$
 CO_2H MeO S

Sol. A, B

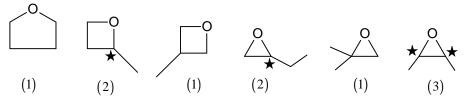
$$C = C - CH_2 - C - H$$

$$C - (CH_2)_2 - C - H$$

$$H_2C - (CH_2)_2 - C - OH$$

$$H_2SO_4 - GH_2 - G$$

SECTION 2 (Maximum Marks: 18)


- This section contains SIX (06) questions. The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer. If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the correct numerical value is entered as answer.

Zero Marks: 0 In all other cases

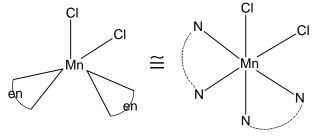
*Q.1. Total number of isomers, considering both structural and stereoisomers, of cyclic ethers with the molecular formula C_4H_8O is_____

Sol. 10.00

- *Q.2. The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05. If the density of the solution is 1.2 g cm⁻³, the molarity of urea solution is _____ (Given data: Molar masses of urea and water are 60 g mol⁻¹ and 18 g mol⁻¹, respectively)\
- Sol. 2.98

Let mole of urea = x

$$\frac{x}{x + \frac{900}{18}} = 0.05, \ x = \frac{50}{19}$$


Mass of solution =
$$\frac{50}{19} \times 60 + 900 = \frac{20100}{19}$$

Volume of solution =
$$\frac{20100}{19 \times 1.2}$$
 ml

$$= \frac{20.1}{19 \times 1.2}$$
litre

Molarity =
$$\frac{\frac{50}{19}}{\frac{20.1}{19 \times 1.2}} = \frac{50 \times 1.2}{20.1} = \frac{60}{20.1} \approx 2.985$$

- 3. Total number of cis N-Mn-Cl bond angles (that is, Mn N and Mn Cl bonds in cis positions) present in a molecule of cis-[Mn(en)₂Cl₂] complex is_____(en = NH₂CH₂CH₂NH₂)
- Sol. 6.00

- *Q. 4. The amount of water produced (in g) in the oxidation of 1 mole of rhombic sulphur by conc. HNO₃ to a compound with the highest oxidation state of sulphur is______(Given data: Molar mass of water = 18 g mol⁻¹)
- Sol. 288.00 $S_8 + 48HNO_3 \longrightarrow 8H_2SO_4 + 48NO_2 + 16H_2O$

Mass of $H_2O = 18 \times 16 = 288$ gram

- 5. The decomposition reaction $2N_2O_5(g) \xrightarrow{\Delta} 2N_2O_4(g) + O_2(g)$ is started in a closed cylinder under isothermal isochoric condition at an initial pressure of 1 atm. After $Y \times 10^3$ s, the pressure inside the cylinder is found to be 1.45 atm. If the rate constant of the reaction is 5×10^{-4} s⁻¹, assuming ideal gas behaviour, the value of Y is_____
- Sol. 2.30

Unit of K represent it is first order reaction.

$$2N_{2}O_{5} \longrightarrow 2N_{2}O_{4} + O_{2}$$

$$t = 0 \qquad 1 \qquad 0 \qquad 0$$

$$t = t \qquad 1 - P \qquad P \qquad P/2$$

$$1 - P + P + \frac{P}{2} = 1.45$$

$$\frac{P}{2} = 0.45, p = 0.9$$

$$t = \frac{2.303}{2 \times 5 \times 10^{-4}} \log \frac{1}{1 - P}$$

$$y \times 10^{-3} = \frac{2.303}{2 \times 5 \times 10^{-4}} \log \frac{1}{1 - 0.9} = \frac{2.303}{2 \times 5 \times 10^{-4}} \log 10$$

*Q.6. Total number of hydroxyl groups present in a molecule of the major product **P** is______

$$\frac{\text{i) H}_{2}, \text{Pd}-\text{BaSO}_{4}, \text{quinoline}}{\text{ii) dil. KMnO}_{4}(\text{excess}), 273 \text{ K}} P$$

Sol. 6.00

Y = 2.30

$$\begin{array}{c} H_{2}/Pd-BaSO_{4} \\ \end{array}$$

- This section contains **TWO (02)** questions.
- Each List-Match set has **TWO (02)** Multiple Choice Questions.
- Each List-Match set has two lists: List-I and List-II.
- List-I has Four entries (I), (II), (III) and (IV) and List-II has Six entries (P), (Q), (R), (S), (T) and (U).
- **FOUR** options are given in each Multiple Choice Question based on **List-1** and **List-II** and **ONLY ONE** of these four options satisfies the condition asked in the Multiple Choice Question.

Answer to each question will be evaluated according to the following marking scheme:

Full Marks: +3 If ONLY the option corresponding to the correct combination is chosen.

Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered).

Negative Marks: -1 In all other cases.

Answer the following by appropriately matching the lists based on the information given in the paragraph

*Q.1. Consider the Bohr's model of a one-electron atom where the electron moves around the nucleus. In the following, List-I contains some quantities for the nth orbit of the atom and List-II contains options showing how they depend on n.

LIST-I LIST-II Radius of the nth orbit (I) (P) (II) Angular momentum of the electron in the nth (O) Kinetic energy of the electron in the nth orbit (III)(R) Potential energy of the electron in the nth orbit **(S)** $\propto n^1$ (T) $\propto n^2$ (U) $\propto n^{1/2}$

Which of the following options has the correct combination considering List-I and List-II? Options

- A. (III), (P)
- B. (IV), (U)
- C. (III), (S)
- D. (IV), (Q)
- Sol. A

Answer the following by appropriately matching the lists based on the information given in the paragraph

*Q.2. Consider the Bohr's model of a one-electron atom where the electron moves around the nucleus. In the following, List-I contains some quantities for the nth orbit of the atom and List-II contains options showing how they depend on n.

LIST-I LIST-II Radius of the nth orbit (I) (P) Angular momentum of the electron in the nth orbit (II)(Q) Kinetic energy of the electron in the nth orbit (R) $\propto n^0$ Potential energy of the electron in the nth orbit **(S)** $\propto n^1$ (T) $\propto n^2$ (U) $\propto n^{1/2}$

Which of the following options has the correct combination considering List-I and List-II? Options

- A. (I), (T)
- B. (II), (R)
- C. (I), (P)
- D. (II), (Q)
- Sol. A

Sol(1-2). KE =
$$\frac{13.6Z^2}{n^2}$$
 eV / atom

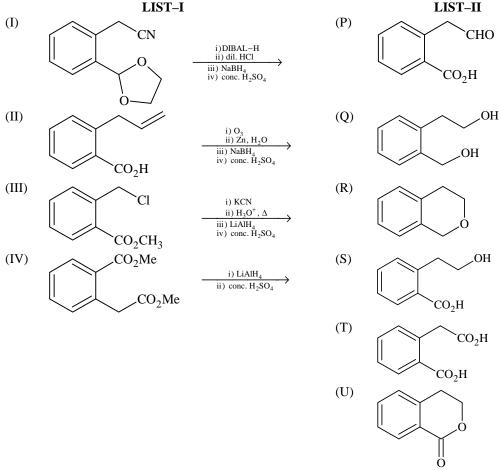
$$PE = \frac{-2 \times 13.6Z^2}{n^2}$$
 eV / atom
Radius = $0.529 \frac{n^2}{Z}$ Å
Angular momentum of electron (mvr) = $\frac{nh}{2\pi}$

Answer the following by appropriately matching the lists based on the information given in the paragraph

3. List-I includes starting materials and reagents of selected chemical reactions. List-II gives structures of compounds that may be formed as intermediate products and/or final products from the reactions of List-I.

(I) CN (P) CHO

$$\begin{array}{c} \text{LIST-II} \\ \text{(I)} \\ \text{(II)} \\ \text$$


Which of the following options has the correct combination considering List-I and List-II? Options

- A. (II), (P), (S), (T)
- B. (II), (P), (S), (U)
- C. (I), (S), (Q), (R)
- D. (I), (Q), (T), (U)

Sol. B

Answer the following by appropriately matching the lists based on the information given in the paragraph

List-I includes starting materials and reagents of selected chemical reactions. List-II gives structures of compounds that may be formed as intermediate products and/or final products from the reactions of List-I.

Which of the following options has the correct combination considering List-I and List-II? **Options**

A. (IV), (Q), (U)

B. (IV), (Q), (R)

C. (III), (S), (R)

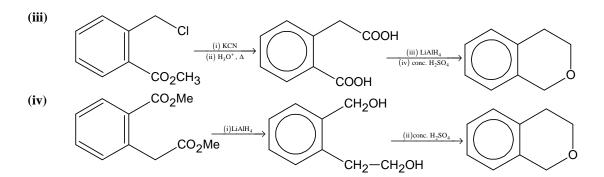
(III), (T), (U)D.

Sol.

Sol(3-4).

B
3-4). (i)

$$CN \xrightarrow{(i)DIBAL-H} \xrightarrow{(ii) MaBH_4} \xrightarrow{(iv) conc. H_2SO_4}$$
(ii)


$$CHO \xrightarrow{(i)O_3} \xrightarrow{(i)O_3} \xrightarrow{(i)Zn/H_2O}$$

$$COOH$$

$$COOH$$

$$COOH$$

$$COOH$$

