SALT ANALYSIS

INTRODUCTION:

The purpose of chemical analysis is to establish the composition of a substance. This is usually done in two distinct steps: Qualitative analysis and quantitative analysis. The qualitative analysis involves the detection of the anions and the cations present in an inorganic mixture. Sometimes the knowledge of anions present in a mixture provide important clues about the cations which may be present in a mixture and the scheme of analysis to be followed. Therefore, it is desirable to first detect the presence of anions and after that the cations.

RADICAL

A charged atom or groups of atoms which participates in chemical reactions. CuCl₂ + $H_2SO_4 \rightarrow CuSO_4$ + HCl Base Acid Salt

 $Cu^{2*}\;SO_4{}^{2-}$ Basic radical Acidic radical

Positive radical — Basic radical Negative radical — Acid radical Valency: The magnitude of charge on a radical.

IDENTIFICATION OF ACIDIC RADICALS

Group I: This group consists of radicals which are detected by dilute H_2SO_4 or dilute HCI. These are (i) Carbonate, CO_3^{2-} (ii) Sulphite, SO_3^{2-} (iii) Sulphide, S^{2-} (iv) Acetate $CH_3COO^$ and (v) Nitrite, NO_2^{--}

Group II: This group consists of radicals which are detected by concentrated H₂SO₄. These are (i) Chloride, Cl⁻ (ii) Bromide, Br⁻ (iii) Iodide, I⁻ (iv) Nitrate NO₃⁻ and (v) Oxalate $C_2O_4^{2^-}$

Group III: The radicals which do not give any characteristic gas with dilute and concentrated H_2SO_4 . These are (i) Sulphate, SO_4^{2-} (ii) Phosphate, PO_4^{3-} (iii) Borate and (iv) Fluoride.

(A) Observation of Dil. HCI/H₂SO₄ + little amount of substance on slow heating

Radical

Test / Observation / Analysis

Reaction

I) CO₃²- (Carbonate)) Sharp bubbling of colourless gas (CO₂)	Na₂CO₃ +H₂SO₄ →Na₂SO₄ +H₂O+CO₂↑
	i) Gas turns milky to lime	CO₂ + Ca(OH)₂ → CaCO₃↓ (Milky)+H₂O
	ii) On passing excess gas through lime water, milky colour disappears.	CaCO₃ + CO₂ + H₂O→Ca(HCO₃)₂
2) SO₃²⁻ (Sulphite)) Colourless gas (SO₂) in which very unpleasant smell of burnt sulphur	Na₂SO₃ +H₂SO₄ →Na₂SO₄ +H₂O+SO₂↑
	i) Gas turns green to moist acidic K₂Cr₂O₂ paper	$_{2}Cr_{2}O_{7} + H_{2}SO_{4} + 3SO_{2} \rightarrow K_{2}SO_{4} + Cr_{2}(SO_{4})_{3}(green) + H_{2}O$
	ii) Sulphite gives white ppt. with BaCl₂ which is soluble in dil. HCl	a₂SO₃ + BaCl₂ → 2NaCl + BaSO₃↓
8) S²⁻ (Sulphide)) Colourless gas with rotten egg smell (H₂S)	Na₂S + H₂SO₄ →Na₂SO₄ +H₂S↑
	i) Gas turns black to lead acetate paper	CH₃COO)₂Pb + H₂S →PbS↓(black) + 2CH₃COOH
	ii) Sulphide turns violet colour to sodium nitroprusside soln.	Na₂S + Na₂[Fe(NO)(CN)₅] →Na₄[Fe(NO)(CN)₅S]↑ (violet)
I) CH₃COO⁻ (Acetate)) Vinegar smell, acetate may be	2CH₃COONa + H₂SO₄ → 2CH₃COOH + Na₂SO₄ (Vinegar smell)

	,	CH₃COONa + 2FeCl₃
	neutral FeCl₃ solution.	→Fe(CH₃COO)₃ + 3NaCl
5) NO₂⁻ (Nitrite)) Red, brown NO₂ vapour comes out. Nitrite may be	$\begin{array}{l} NaNO_2 + H_2SO_4 \rightarrow Na_2SO_4 + \\ 2HNO_2 \ 3HNO_2 \rightarrow HNO_3 + 2NO \uparrow \\ + \ H_2O \ 2NO + O_2 \rightarrow 2NO_2 \uparrow \end{array}$
	i) Gas turns blue to iodic KI starch paper.	KI + 2NO ₂ \rightarrow 2KNO ₂ + I ₂ starch + I ₂ \rightarrow blue colour
5) CI ⁻ (Chloride)) Colourless fuming gas (HCI) with faint smell	NaCl + H₂SO₄ → Na₂SO₄ + 2HCl↑
	i) Chloride gives white ppt. with AgNO₃ which is soluble in NH₄OH	aCl + AgNO₃ → AgCl↓ + NaNO₃ (white) AgCl + 2NH₄OH → Ag(NH₃)₂Cl + 2H₂O (soluble)
	ii) Chromyl chloride test	NaCl + K₂Cr₂O₂ + 3H₂SO₄ → 2CrO₂Cl₂ + 2Na₂SO₄ + K₂SO₄ + 3H₂O (orange red)
	a) Sodium chloride when heated with K ₂ Cr ₂ O ₇ & conc. H ₂ SO ₄ then orange red vapour of chromyl chloride CrO ₂ Cl ₂ comes out.	rO₂Cl₂ + NaOH → Na₂CrO₄ + 2NaCl + 2H₂O
	 b) This vapour when passed with NaOH gives yellow solution (Na₂CrO₄) 	a₂CrO₄ + (CH₃COO)₂Pb → 2CH₃COONa + PbCrO₄↓ (yellow ppt.)
	c) Acidic solution of Na₂CrO₄ gives yellow ppt. with (CH₃COO)₂Pb	

′) Br ⁻ (Bromide)) Brown vapour comes out of [Br₂]Br⁻ or NO₂ may be	NaBr + H₂SO₄ → Na₂SO₄ + 2HBr 2HBr + H₂SO₄ → Br₂↑ + SO₂↑ + 2H₂O
-----------------------------	---	--

Radical	Test / Observation / Analysis	Reaction
I 1) SO₄² - (Sulphate)	mall amount of substance + conc.HNO₃ mixtures is heated & now adding BaCl₂ white ppt. comes which is insoluble in acid or base. Sulphate confirmed.	a₂SO₄ + 2HNO₃ → 2NaNO₃ + H₂SO₄ H₂SO₄ + BaCl₂ → BaSO₄↓ + 2HCl (white)
l 2) PO ₄³∸ (Phosphat e)	a) Small amount of substance + conc. HNO₃ mixture is heated &	a) Na₃PO₄ + 3HNO₃ → 3NaNO₃ + H₃PO₄
	b) Ammonium molybdate is mixed, yellow ppt. comes which confirms the presence of phosphate.	 p) H₃PO₄ + 12(NH₄)₂MoO₄ → 23HNO₃ (ammonium molybdate) →(NH₄)₃PO₄12MoO₃↓ + 12H₂O → 21NH₄NO₃ (ammonium phosphomolybdate (yellow ppt.))
I 3) BO ₃³- (Borate)	o small quantity of the substance (salt or mixture), add a few mL of ethyl alcohol and conc. H ₂ SO ₄ . Stir the contents with a glass rod. Heat the test tube and bring the mouth of the test tube near the flame. The formation of green-edged flame indicates the presence of borate.	Na $_{3}BO_{3} + 3H_{2}SO_{4} \rightarrow 2Na_{2}SO_{4} + 2H_{3}BO_{3} H_{3}BO_{3} + 3C_{2}H_{5}OH \rightarrow (C_{2}H_{5})_{3}BO_{3} + 3H_{2}O (Ethyl borate)$

l 4) F ⁻ (Fluoride)	ake a small amount of the substance in a dry test tube and add an equal amount of sand. Mix the contents	NaF + H ₂ SO ₄ \rightarrow Na ₂ SO ₄ + 2HF \uparrow SiO ₂ + 2HF \rightarrow SiF ₄ + H ₂ O 3SiF ₄ + 2H ₂ O \rightarrow H ₂ SiO ₃ + 2H ₂ SiF ₆ (white)	1
	and add conc. H₂SO₄. Heat the contents and place a glass rod	(white)	
	moistened with water over the mouth of the test tube. A waxy		
	white deposit on the rod is formed.		

M

TEST OF BASIC RADICALS

Radicals:

GROUP I Pb²⁺, Ag⁺, Hg²⁺(ous) **Group reagent:** Dil. HCI

Radicals:

GROUP II Hg²⁺, Pb²⁺, Bi³⁺, Cu²⁺, Cd²⁺ Gro As³⁺, Sb³⁺, Sn²⁺, Sn⁴⁺ Gro

Group IIA Group IIB

Group reagent:

H₂S gas in presence of dil. HCl

Radicals:

GROUP III Fe³⁺, Al³⁺, Cr³⁺ **Group reagent:** NH₄OH + NH₄CI

Radicals:

GROUP IV Ni²⁺, Co²⁺, Mn²⁺, Zn²⁺ **Group reagent:** H₂S gas in presence of NH₄Cl & NH₄OH

Radicals:

GROUP V Ba²⁺, Sr²⁺, Ca²⁺ **Group reagent:** (NH₄)₂CO₃ in presence of NH₄OH

Radicals: GROUP VI Mg²⁺ Group reagent: Na₂HPO₄ in presence of NH₄OH

Group No./Radical	est / Observation / Analysis	Reaction
group Pb²⁺, Ag⁺, Hg₂²⁺	small amount of salt + few drops of dil. HCl, white ppt. comes out which confirms the presence of Pb ²⁺ , Ag ⁺ or Hg ₂ ²⁺	$\begin{array}{l} bCl_2+2Cl^- \rightarrow [PbCl_4]^{2-} \\ (soluble) \ AgCl+Cl^- \rightarrow \\ [AgCl_2]^- \ (insoluble) \\ Hg_2SO_4+2Cl^- \rightarrow Hg_2Cl_2\downarrow \\ + \ SO_4^{2-} \end{array}$
ote: PbCl ₂ is soluble in hot water (but insoluble in cold water) Whereas insoluble in both AgCl & Hg ₂ Cl ₂		
l) Pb²⁺	Pb" ion gives yellow ppt. with K₂CrO₄ & KI both separately.	bCl₂ + K₂CrO₄ →PbCrO₄↓ (yellow) + 2KCl
2) Hg₂²⁺	Hg₂" gives black ppt. with NH₃	lg₂Cl₂ + 2NH₄OH → Hg(NH₂)Cl↓ + Hg↓ + NH₄Cl + 2H₂O
3) Ag⁺) Ag⁺ is soluble in NH₄OH (ii) Ag⁺ ion gives yellow ppt. with K₂CrO₄	$g^* + 2NH_4OH \rightarrow [Ag(NH_3)_2]^+ + 2H_2O Ag^* + I^- \rightarrow AgI\downarrow$ (yellow)
l) Cu ²⁺) Passing H₂S in presence of HCl these gives ions	
group Hg ²⁺ , Cu ²⁺ , Pb ²⁺ , Cd ²⁺ , Bi ³⁺ (IIA) As ³⁺ , Sb ³⁺ , Sn ²⁺ (IIB) Cu ²⁺ , Cd ²⁺ , Bi ³⁺ , Pb ²⁺ , Sn ⁴⁺ , Sb ^{3+**}	ellow ppt. (CdS, As₂S₃) Orange ppt. (Sb₂S₃) Brown ppt. (SnS)	

SALT ANALYSIS

•

Radical Test	/ Observation / Analysis	Reaction
--------------	-----------------------------	----------

g²⁺, Pb²⁺, Bi³⁺, Cu²⁺	lack ppt. (HgS, PbS, Bi₂S₃, CuS)	
ote: Obtained ppt. is differentiated by the reaction of (NH₄)₂S₂ which is insoluble in the ppt. obtained of II A and soluble in II B ppt.		
-A group Hg²⁺	Hg" is soluble in aquaregia Adding SnCl₂ gives white ppt. obtained which turns black	$\begin{array}{l} 2\text{HgS} + 2\text{HNO}_3 + 6\text{HCI} \rightarrow 2\text{HgCl}_2 + \\ 2\text{NO}\uparrow + 2\text{S}\downarrow + 4\text{H}_2\text{O} \ 2\text{Hg}^{2^+} + \\ \text{SnCl}_2 \rightarrow \text{Sn}^{4^+} + \text{Hg}_2^{2^+} + \text{HgCl}_2\downarrow \\ \text{Hg}_2\text{Cl}_2 + \text{SnCl}_2 \rightarrow \text{SnCl}_4 + 2\text{Hg}\downarrow \\ (\text{black}) \end{array}$
5) Pb²⁺) In solution, Pb ²⁺ gives hot ppt. with H₂SO₄ (ii) In solution, Pb ²⁺ ion gives yellow ppt. with K₂CrO₄ & KI	$Pb^{2*} + H_2SO_4 \rightarrow PbSO_4 \downarrow + 2H^+ Pb^{2*} + CrO_4^{2^-} \rightarrow PbCrO_4 \downarrow \text{ (yellow) } Pb^{2*} + 2I^- \rightarrow PbI_2 \downarrow \text{ (yellow)}$
5) Cu²⁺) These ion gives dark blue colour with excess NH₄OH (ii) Cu²⁺ ion gives chocolate colour with K₄Fe(CN)₅	$\begin{array}{l} Cu^{2^{\star}} + 4NH_4OH \rightarrow [Cu(NH_3)_4]^{2^{\star}} + \\ 4H_2O \ 2Cu^{2^{\star}} + K_4Fe(CN)_6 \rightarrow \\ Cu_2[Fe(CN)_6]\downarrow + 4K^{\star} \ (chocolate \ or \\ red \ brown \ ppt.) \end{array}$
') Bi³⁺) Bi ³⁺ ion gives white ppt. when adding water and adding HCl solution it gets clear (ii) In this solution if stannous ppt. with alkaline Na₂SnO₃	$\begin{array}{l} \text{Bi}(\text{NO}_3)_3 + \text{H}_2\text{O} \rightarrow \text{Bi}(\text{OH})(\text{NO}_3)_2 + \\ \text{HNO}_3 \text{ (white bismuth oxy nitrate)} \\ \text{Bi}(\text{OH})(\text{NO}_3)_2 + 3\text{HCI} \rightarrow \text{BiCI}_3 + \\ 2\text{H}_2\text{O} + \text{HNO}_3 \text{ BiCI}_3 + 3\text{Na}_2\text{SnO}_3 + \\ 6\text{NaOH} \rightarrow \text{(sodium stannite)} 2\text{Bi}_1 \\ + 3\text{Na}_2\text{SnO}_3 + 6\text{NaCI} + 3\text{H}_2\text{O} \\ \text{(black)} \end{array}$
3) Cd²⁺	 The yellow precipitate is dissolve in dil. HNO₃. To the resulting solution, NH₄OH is added slowly. A white ppt. is formed which dissolve in excess of NH₄OH. (ii) When KCN is present, in this solution a yellow ppt. appears. 	$\begin{array}{l} Cd^{2+} + (S^{2-}) \rightarrow CdS(yellow) + H_2O + \\ & 2H^+ (NO_3)^- CdS + 2HNO_3 \rightarrow \\ & Cd(NO_3)_2 + H_2S\uparrow Cd(NO_3)_2 + \\ & 2NH_4OH \rightarrow Cd(OH)_2\downarrow + 2NH_4NO_3 \\ & (white) Cd(OH)_2 + 2NH_4OH \rightarrow \\ & \underline{Cd}(NH_3)_{42} + 2H_2O \underbrace{Cd}(NH_3)_{42} + H_2S \\ & \rightarrow CdS\downarrow + 2NH_4NO_3 + 2NH_3 \end{array}$

-B group As³⁺	n solution As³⁺ ion forms yellow ppt. with ammonium molybdate and HNO₃	$\begin{array}{l} As^{3*} \rightarrow (H_3AsO_4) \rightarrow As^{5*} \; (\text{in } H_3AsO_4) \\ H_3AsO_4 \; + \; 12(NH_4)_2MoO_4 \; + \\ 21HNO_3 \rightarrow (NH_4)_3[As(Mo_3O_{10})_4] \downarrow \; + \\ & 21NH_4NO_3 \; + \; 12H_2O \end{array}$
l0) Sn⁴⁺	n ^{4⁺} ion gives white ppt. which turns black in form of HgCl₂ with SnCl₂ when thusly black.	$\begin{array}{l} SnCl_4 + 2HgCl_2 \to SnCl_4 + Hg_2Cl_2 \\ Hg_2Cl_2 + SnCl_2 \to SnCl_4 + 2Hg \\ (black) \end{array}$

SALT ANALYSIS

Radical	Test / Observation / Analysis	Reaction	
(11)Sn²⁺	turning Sn²⁺ to Sn⁴⁺. After Sn⁴⁺ is examined by HgCl₂.	SnCl ₂ + HgCl ₂ \rightarrow No reaction 3SnCl ₂ + 2A ^I \rightarrow 2AlCl ₃ + 3SnCl ₄	
(12)Sb³⁺	On adding water in solution, Sb³⁺ ion forms white ppt. in the form of SbOCl which is dissolved when HCl is added.	SbCl₃ + H₂O → SbOCl↓ (white) + 2HCl SbOCl + 2HCl → SbCl₃ + H₂O	
II group Fe³∗, Cr³∗ & Al³⁺	hese ion precipitate in the form of hydroxide on adding NH₄OH & NH₄OH	[−] e ³⁺ + 3OH ⁻ → Fe(OH) ₃ ↓ (reddish brown ppt.) Cr ³⁺ + 3OH ⁻ → Cr(OH) ₃ ↓ (green ppt.) Al ³⁺ + 3OH ⁻ → Al(OH) ₃ ↓ (white ppt.)	
Note: In the analysis of III group, some drops of conc. HNO₃ are also added before oxidising Fe ²⁺ to Fe ³⁺			
(13) Al³⁺	White ppt. of Al(OH)₃ is soluble in an excess of sodium hydroxide	$AI(OH)_3 + NaOH \rightarrow Na[AI(OH)_4] + 2H_2O (sodium aluminate)$	
(14)Cr³⁺	i) Solution of Cr(OH)₃ is acidified + Br₂ water (or in this soln. when BaCl₂ is added yellow ppt. is obtained)	$\begin{array}{l} Br_2 + 2OH^- \rightarrow 2Br^- + H_2O + [O] \\ 2Cr(OH)_3 + 2NaOH + 3O \rightarrow \\ 2Na_2CrO_4 + 5H_2O\ Na_2CrO_4 + \\ BaCl_2 \rightarrow BaCrO_4 \downarrow \text{ (yellow)} + \\ 2NaCl \end{array}$	

(15) Fe³⁺	 (i) On addition of KSCN to Fe³⁺ solution, blood red colouration is obtained. When KSCN is added to this soln., blood red colouration is obtained. (ii) In this soln., on adding K₄Fe(CN)₆, prussian blue colour is obtained. 	$\begin{array}{l} Fe(OH)_{3}+3HCI\rightarrowFeCI_{3}+3H_{2}O\\ Fe^{3*}+SCN^{-}\rightarrow[Fe(SCN)]^{2*}\\ (NCI)\ (blood\ red)\ Fe^{3*}+\\ K_{4}[Fe(CN)_{6}]\rightarrowFe_{4}[Fe(CN)_{6}]_{3}\downarrow\\ (KCI)\ (ferric\ ferrocyanide\\ prussian\ blue) \end{array}$
IV group Zn²⁺, Mn²⁺, Ni²⁺, Co Ni²⁺	-	NiCl₂ + H₂S → NiS↓ + 2HCl
(16)Ni²⁺	n presence of NH₄OH, Ni salt on reaction with dimethyl glyoxime (DMG) turns red ppt. of nickel dimethyl glyoxime.	CH₃ - C = NOH + Ni ²⁺ → CH₃ - C = NONi + 2H⁺ DMG + Nickel dimethyl glyoxime (red ppt.)
(17)Co²⁺	Cobalt salt turns blue colouration with NH₄CNS	CoCl₂ + 4NH₄CNS → [Co(NH₄)₄(CNS)₄]²+ + 2NH₄Cl (ammonium cobalt thiocyanate) (blue colour)
Radical	Test / Observation / Analysis	Reaction

Radical	Test / Observation / Analysis	Reaction
(18)Zn²⁺	In solution, Zn ²⁺ ion turns white ppt. with NaOH which is soluble in excess NaOH	n ²⁺ + 2NaOH → Zn(OH)₂↓ (white) + 2Na⁺ Zn(OH)₂ + 2NaOH → Na₂Zn(OH)₄ + 2H₂O (soluble zincate)
(19)Mn²⁺	a) Mn²⁺ ion gives pink ppt. with NaOH (b) On heating turns black or brown.	$/\ln^{2+} + 2NaOH \rightarrow Mn(OH)_2 \downarrow + 2Na^+$ $Mn(OH)_2 + O \rightarrow MnO_2 \downarrow + H_2O$ (green and black)
′ group Ba²⁺, Sr²⁺, Ca²⁺	n adding (NH₄)₂CO₃, these precipitate in the form of carbonates.	Ba ²⁺ + (NH ₄) ₂ CO ₃ + NH ₄ OH → BaCO ₃ ↓ + 2NH ₄ ⁺ BaCO ₃ + 2CH ₃ COOH → Ba(CH ₃ COO) ₂ (soluble in CH ₃ COOH)

(20) Ba²+	Give Ba²⁺ ion in solution (i) Yellow ppt. with K₂CrO₄ (ii) White ppt. with (NH₄)₂SO₄ (iii) white ppt. with (NH₄)₂CO₃	$\begin{array}{l} a^{2^{\star}} + K_2 CrO_4 \rightarrow BaCrO_4 \downarrow \mbox{(yellow)} + \\ 2K^{\star} Ba^{2^{\star}} + (NH_4)_2 SO_4 \rightarrow BaSO_4 \downarrow \\ \mbox{(white)} + 2NH_4^{\star} Ba^{2^{\star}} + \\ \mbox{(NH_4)}_2 CO_3 \rightarrow BaCO_3 \downarrow \mbox{(white)} + \\ 2NH_4^{\star} \end{array}$
(21) Ca²⁺	(i) On test in (NH₄)₂CO₃ gives white precipitate Ca²⁺ ion gives white ppt. only with (NH₄)₂C₂O₄	$\begin{array}{l} Ca^{2^{+}}+(NH_4)_2CO_3\toCaCO_3\downarrow+\\ 2NH_{4^{+}}Ca^{2^{+}}+(NH_4)_2C_2O_4\to\\ CaC_2O_4\downarrow+2NH_{4^{+}}\ (\text{white ppt.}) \end{array}$
Note: The order of fruit is same as above Ba ²⁺ , Sr ²⁺ , Ca ²⁺		
/I group (22) Mg²⁺	lg²⁺ ion gives white ppt. with NH₄OH + Na₂HPO₄	$\begin{array}{l} Mg^{2*} + NH_4OH + Na_2HPO_4 \rightarrow \\ MgNH_4PO_4\downarrow \text{ (white)} + 2Na^* + \\ H_2O \end{array}$
Zero group	 (a) NH₄⁺ ion when it is mix or reacting with soda lime (NaOH), gives smell of NH₃ (b) Gas evolved (NH₃) gives white fume with HCI (c) On passing NH₄⁺ through Nessler's reagent [K₂HgI₄/NaOH], brick colour is obtained. (d) Brown ppt. is obtained with mercurous nitrate is present. 	(a) $NH_4Cl + NaOH \rightarrow NaCl + NH_3\uparrow$ + H_2O (b) $NH_3 + HCl \rightarrow NH_4Cl\uparrow$ (white fume) (c) $Hg(NO_3)_2 +$ $2NH_3 \rightarrow Hg + Hg(NH_2)NO_3 +$ NH_4NO_3 (black) (d) $2K_2Hgl_4 +$ $4KOH + NH_3Cl \rightarrow$ (Nessler's reagent) Hg + HgNH_2l + 7Kl + $KCl + 4H_2O$ (iodide solution brown ppt.)

BORAX BEAD TEST:

On heating borax the colourless glassy bead formed consists of sodium metaborate and boric anhydride.

 $Na_2B_4O_7.10H_2O \rightarrow Na_2B_4O_7 \rightarrow 2NaBO_2 + B_2O_3$ (Heat) (Glassy bead)

On heating with a coloured salt, the glassy bead forms a coloured metaborate in oxidizing flame. CuSO₄ \rightarrow CuO + SO₃ CuO + B₂O₃ \rightarrow Cu(BO₂)₂ Copper metaborate (Blue)

Colour of The bead in:

Metal	Oxidizing-flame	Reducing-flame	
	Hot	Cold	
Copper	Green	Blue	
Manganese	Green-yellow	Light-yellow	
Chromium	Green	Green	
Cobalt	Blue	Blue	R
Nickel	Violet	Brown	

PHYSICAL APPEARANCE OR INORGANIC SALT

S. No.	INORGANIC SALT	COLOUR
1.	Cu ²⁺	Blue
2.	Cr ³⁺	Dark green
3.	Fe ²⁺	Green
4.	Fe³⁺	Yellow or Brown

5.	Mn²⁺	Light Pink
6.	Co ²⁺	Pink
7.	Ni ²⁺	Green or Blue
8.	HgO, HgI₂, Pb₃O₄	Red

ACTION OF HEAT

- Except (Na, K, Rb and Cs) all carbonates on heating decomposes to give CO₂. Li₂CO₃ → Li₂O + CO₂↑ MgCO₃ → MgO + CO₂↑
- Generally all carbonates decomposes to give carbonate and CO₂. 2NaHCO₃
 → Na₂CO₃ + H₂O + CO₂
- Generally halides are stable on heating but some halides decompose. 2KClO₃
 → 2KCl + 3O₂↑

 $MgCl_{2}.6H_{2}O \longrightarrow MgO + 2HCl^{+} + 5H_{2}O$

4. Nitrates decompose on heating. Hg₂Cl₂ \longrightarrow HgCl₂ + Hg NaN₃ \longrightarrow Na + 3/2 N₂↑

 $NH_4NO_3 \longrightarrow N_2O + 2H_2O NaNO_3 \longrightarrow NaNO_2 + O_2$ (except Li)

 $2KNO_3 \longrightarrow K_2O + 2NO_2\uparrow + O_2$ Important

 $2Mg(NO_3)_2 \longrightarrow 2MgO + 4NO_2\uparrow + O_2 2Cu(NO_3)_2 \longrightarrow 2CuO + 4NO_2\uparrow + O_2\uparrow (except Hg all bivalent nitrates) Hg(NO_3)_2 \longrightarrow Hg + 2NO_2\uparrow + O_2$

5. Silver salts on heating gives Ag. Ag₂CO₃ \longrightarrow 2Ag + CO₂↑ + O₂

 $2AgNO_{3} \longrightarrow 2Ag + 2NO_{2}\uparrow + O_{2}$

CHARACTERISTIC FLAME COLOUR

(1) Na \rightarrow yellow glow (6) Cu²⁺, BO₃³⁻ \rightarrow blue or green (2) K \rightarrow violet (7) Ba \rightarrow golden yellow (3) Ca \rightarrow violet (8) Pb \rightarrow violet red (4) Sr \rightarrow crimson (9) As \rightarrow blue (5) Cs \rightarrow crimson red (10) Ba \rightarrow apple green

Note: (1) Be & Mg don't give flame test. (2)Colorless white salt don't possess Cu, Ni, Co, Fe, Mn, Cr etc. (3)White substances which swell are alum, borate and phosphate.

SUBLIMATION ACTION OF A SUBSTANCE AND COLOUR

White: HgCl₂, Hg₂Cl₂, As₂O₃, Sb₂O₃ Yellow: AsCl₃ and Hg₂ halides Brown: HgO, I₂, Bi₂O₃ Black, black and violet: lodides Red: As, Sb, Hg sulphide and iodides.

S No.	Salt	Colour
1	MnO ₂ , Fe ₂ O ₃ , CuO, CoO ₃ , NiO ₂ , sulphides of Al ³⁺ , Cu ²⁺ , Cr ³⁺ , Fe ³⁺ , Fe ²⁺ , Hg ²⁺	Black
2	Hydrated Cu ²⁺ salts	Blue
3	HgO, Hgl₂, Pb₃O₄	Red
4	Cr³+, Cr²+, Ni²+, hydrated Fe²+ salts	Green
	Hydrated Mn ²⁺ salt	Light Pink
	MnO, K ₂ Cr ₂ O ₇ , Sb ₂ S ₃ , ferricyanides	Orange
	Hydrated Fe³∗ salts	 Brown

1. Physical appearance of inorganic salts

Chromates, AgBr, AgI, PbI₂, CdS	Yellow
CaO, Fe₂O₃, PbO₂, CaCrO₄	Dark brown

- 2. Group I : Anions which liberate gases with dil. HCl or dil. H₂SO₄. (CO₃²⁻, HCO₃⁻, SO₃²⁻, S²⁻, NO₂⁻)
- 3. Group II : Gases or acid vapours evolved with conc. H₂SO₄ (Cl⁻, Br⁻, l⁻, NO₃⁻).
- 4. Group III : Anions which do not liberate any gas with dil. HCl or conc. H₂SO₄. They are detected by precipitation (SO₄²⁻, PO₄³⁻).
- 5. White cations : Pb²⁺, Zn²⁺, Hg²⁺ with dil. HCl white ppt occurs.
- Group I : Cations : Pb²⁺, Ag⁺, Hg₂²⁺. Pb²⁺ soluble in hot water. Ag⁺ soluble in NH₄OH gives (Ag(NH₃)₂)⁺, green ppt. (Cr(OH)₃) and brown ppt (Fe(OH)₃).
- 7. Group III cations : Ni²⁺, Co²⁺ gives black ppt. with NH₄OH (excess) and H₂S gas.
- 8. Group IV cations : Na⁺, K⁺, NH₄⁺, Mg²⁺. Na⁺ gives buff ppt. and Zn²⁺ gives white ppt.
- Group V cations : Ba²⁺, Sr²⁺, Ca²⁺ with (NH₄)₂CO₃, NH₄OH (excess) and (NH₂)₂CO₃ gives white ppt.