PART II: CHEMISTRY

SECTION 1

- This section contains **FOUR** (04) questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- Four each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Mark	:	+3	If only the correct option is chosen;
Zero Marks	:	0	If none of the options is chosen (i.e. the question is unanswered)
Negative Marks	:	-1	In all other cases.

*Q.1 The major product formed in the following reaction is

Na in liquid NH₃ reduces non terminal alkyne into trans alkene.

*Q.2 Among the following, the conformation that corresponds to the most stable conformation of *meso*-butane-2,3-diol is

Sol. В

In option (B), given configuration represents meso – butane – 2, 3-diol and due to intramolecular hydrogen bonding, the gauche form is more stable.

Option (C) and (D) does not represent meso – isomer.

Q.3 For the given close packed structure of a salt made of cation X and anion Y shown below (ions of only one face are shown for clarity), the packing fraction is approximately

(A) 0.74	(B) 0.63
(C) 0.52	(D) 0.48

Sol.

В

Packing fraction (f) =
$$\frac{3 \times \frac{4}{3} \pi r_{+}^{3} + 1 \times \frac{4}{3} \pi r_{-}^{3}}{a^{3}}$$
$$= \frac{1 \times \frac{4}{3} \pi \left[3 \left(\frac{r_{+}}{r_{-}}\right)^{3} + 1\right]}{\left(\frac{a}{r_{-}}\right)^{3}}$$

Now
$$2r_{-} = a$$

 $\therefore \frac{a}{r_{-}} = 2$
Also, $\frac{r_{+}}{r_{-}} = 0.414$
So, $f = \frac{1 \times \frac{4}{3} \times 3.14 \left[3 \times (0.414)^{3} + 1 \right]}{(2)^{3}}$
 $= 0.634 \approx 0.63$

Q.4The calculated spin only magnetic moments of $\left[Cr \left(NH_3 \right)_6 \right]^{3+}$ and $\left[CuF_6 \right]^{3-}$ in BM, respectively, are
(Atomic number of Cr and Cu are 24 and 29, respectively)
(A) 3.87 and 2.84
(B) 4.90 and 1.73
(C) 3.87 and 1.73
(D) 4.90 and 2.84

Sol.

Α

 $\left[\operatorname{Cr}(\operatorname{NH}_3)_6\right]^{3+}$ has d³ configuration, so as per CFT, N = 3 and $\mu = \sqrt{3(3+2)} = 3.87$ BM $\left[\operatorname{CuF}_6\right]^{3-}$, has d⁸ configuration and weak field ligand. So N = 2 and $\mu = \sqrt{2(2+2)} = 2.84$ BM

SECTION 2

- This section contains **THREE** (03) question stems
- There are **TWO** (02) questions corresponding to each question stem.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated according to the following marking scheme:
- Full Mark:+2If ONLY the correct numerical value is entered at the designated place;Zero Marks:0In all other cases.

Question Stem for Question Nos. 5 and 6

Question Stem

For the following reaction scheme, percentage yields are given along the arrow:

$$Mg_{2}C_{3} \xrightarrow{H_{2}O} \mathbf{P} \xrightarrow{\mathbf{P}} \underbrace{\operatorname{MeI}}_{(4.0 \text{ g})} \mathbf{Q} \xrightarrow{MeI} \mathbf{Q} \xrightarrow{\operatorname{ReI}} \mathbf{Q} \xrightarrow{\operatorname{ReI}} \mathbf{R} \xrightarrow{\operatorname{ReI}} \mathbf{R} \xrightarrow{\operatorname{ReI}} \underbrace{\operatorname{Hg}^{2+}/\operatorname{H}^{+}}_{333\mathrm{K}} 100\%}_{\operatorname{S} \xrightarrow{\mathrm{Ba}(OH)_{2}}} \mathbf{T} \xrightarrow{\operatorname{NaOCl}} \underbrace{\mathbf{U}}_{80\%} \xrightarrow{\operatorname{(decolourises}} \operatorname{Baeyer's reagent)}}_{\operatorname{Baeyer's reagent)}}$$

X g and y g are mass of **R** and **U**, respectively. (Use : Molar mass (in g mol⁻¹) of H, C and O as 1, 12 and 16, respectively)

Q.5 The value of \mathbf{x} is ____.

Sol. 1.62

Molar mass of P = 40 $\begin{array}{c} P & \xrightarrow{75\%} & Q \\ (0.1 \text{ mole}) & \xrightarrow{75\%} & Q \\ (0.1 \times \frac{3}{4}) & & \\ \end{array} \\ \begin{array}{c} 3Q & \xrightarrow{40\%} & R \\ (0.1 \times \frac{3}{4}) & & & \\ \end{array} \\ \begin{array}{c} \left(\frac{1}{3} \times 0.1 \times \frac{3}{4} \times 0.4 \right) \end{array} \end{array}$

So, moles of R = 0.01 mole Molar mass of (R) = 162So, $x = 0.01 \times 162 = 1.62$ g

Q.6 The value of \mathbf{y} is ____.

Sol. 3.20 - 3.90
Molar mass of 'U' = 122 g or 100 g

$$P_{(0.1 \text{ mole})} \xrightarrow{100\%} S_{(0.1 \text{ mole})}$$

 $2S_{(0.1 \text{ mole})} \xrightarrow{Aldol condensation} T_{(\frac{0.1}{2} \times 0.8)} \xrightarrow{80\%} U_{(\frac{0.1}{2} \times 0.8 \times 0.8)}$
So, mass of 'U' = $\frac{0.1}{2} \times 0.8 \times 0.8 \times 100 = 3.20 \text{ gm}$
Or
Mass of 'U' = $\frac{0.1}{2} \times 0.8 \times 0.8 \times 122 = 3.90 \text{ gm}$

Question Stem for Question Nos. 7 and 8

Question Stem

For the reaction, $\mathbf{X}(s) \rightleftharpoons \mathbf{Y}(s) + \mathbf{Z}(g)$, the plot of $\ln \frac{p_{\mathbf{Z}}}{p^{\Theta}}$ versus $\frac{10^4}{T}$ is given below (in solid line), where $p_{\mathbf{Z}}$ is the pressure (in bar) of the gas \mathbf{Z} at temperature T and $p^{\Theta} = 1$ bar.

* Q.7 The value of standard enthalpy, ΔH^{Θ} (in kJ mol⁻¹) for the given reaction is ____. Sol. 166.28

$$\begin{split} X(s) &\rightleftharpoons Y(s) + Z(g) \\ K_{p} = \frac{p_{z}}{p^{0}}, \text{ also } \Delta G^{0} = -RT \ln k_{p} \\ &= -RT \ln \left(\frac{p_{z}}{p^{0}} \right) \\ \text{Now, } \Delta G^{0} = \Delta H^{0} - T\Delta S^{0} \\ -RT \ln \left(\frac{p_{z}}{p^{0}} \right) = \Delta H^{0} - T\Delta S^{0} \\ \ln \left(\frac{p_{z}}{p^{0}} \right) = - \left(\frac{\Delta H^{0}}{R} \right) \frac{1}{T} + \frac{\Delta S^{0}}{R} \qquad \dots (1) \end{split}$$

Sol. 141.34

Putting the value of ΔH^0 in equation (2), we get

$$-3 = -\left(\frac{2R \times 10^4}{10^4 R}\right) \times \frac{10^4}{7} + \frac{\Delta S^0}{R}$$
$$-3 = -2R \times \frac{10^4}{T} + \frac{\Delta S^0}{R}$$
$$-3 = -2 \times \frac{10^4}{1000} + \frac{\Delta S^0}{R}$$
$$-3 = -20 + \frac{\Delta S^0}{R}$$
$$\therefore \frac{\Delta S^0}{R} = 17$$
$$\therefore \Delta S^0 = 17 \times 8.314 = 141.34 \text{ JK}^{-1} \text{ mol}^{-1}$$

Question Stem for Question Nos. 9 and 10

Question Stem

The boiling point of water in a 0.1 molal silver nitrate solution (solution **A**) is $\mathbf{x}^{\circ}\mathbf{C}$. To this solution **A**, an equal volume of 0.1 molal aqueous barium chloride solution is added to make a new solution **B**. The difference in the boiling points of water in the two solutions **A** and **B** is $\mathbf{y} \times 10^{-2} \,^{\circ}\mathbf{C}$.

(Assume: Densities of the solutions A and B are the same as that of water and the soluble salts dissociate completely.

Use: Molal elevation constant (Ebullioscopic Constant), $K_{h} = 0.5 \text{ K kg mol}^{-1}$;

Boiling point of pure water as 100°C.)

Q.9 The value of \mathbf{x} is ____.

Sol. 100.10 °C

0.1 molal AgNO₃ (aq) solution AgNO₃ \longrightarrow Ag⁺ (aq) + NO₃⁻ (aq) $i = 1 + (2 - 1) \times 1 = 2(\alpha = 1, \text{ given})$ $\Delta T_b = i \times k_b \times m$ $\Delta T_b = 2 \times 0.5 \times 0.1 = 0.1$ So, boiling point of solution 'A' is = 100.10°C = x

Q.10 The value of $|\mathbf{y}|$ is ____.

Sol. 2.5

Let solution 'B' is prepared by mixing 1 L (=1000 g) of solution 'A' with 1 L (= 1000 g) of solution of $BaCl_2$.

 $\begin{array}{rcl} & \text{BaCl}_2 & + \ 2\text{AgNO}_3 & \longrightarrow 2\text{AgCl}(s) & + \ \text{Ba}(\text{NO}_3)_2 \\ \text{Initial moles} & 0.1 \, \text{moles} & 0.1 \, \text{moles} & - & 0 \\ & \text{Moles after} & & & \\ & \text{reaction} & 0.1 - 0.05 \\ & & = 0.05 \, \text{moles} & 0 & - & 0.05 \, \text{moles} \\ & & \text{So, molality of new solution} = \left(\frac{i_1 \times m_1 + i_2 \times m_2}{2}\right) \\ & & = \left(\frac{3 \times 0.05 + 3 \times 0.05}{2}\right) \\ & & = 0.15 \end{array}$

Now, Elevation of boiling point of solution 'B' be (ΔT_b^1)

 $\Delta T_{b}^{1} = 0.15 \times k_{b}$ $= 0.15 \times \frac{1}{2}$ = 0.075Now, $T_{b}^{-1} = 100.075 \text{ °C}$ So, difference of boiling point of 'A' and 'B' = 100.10 - 100.075 = 0.025 = y \times 10^{-2} (given)
So, y = 2.5

				SECTION 3	
•	This section contains SIX (06) question.				
•	Each question has FOUR options (A), (B), (C) and (D). ONE OR MOER THAN ONE of these four option(s) is (are) correct answer(s).				
•	For each question, choose the option(s) corresponding to (all) the correct answer(s).				
•	Answer to each question will be evaluated according to the following marking scheme:				
	Full Mark	:	+4	If only (all) the correct option(s) is(are) chosen;	
	Partial Marks	:	+3	If all the four options are correct but ONLY three options are chosen;	
	Partial Marks	:	+2	If three or more options are correct but ONLY two options are chosen, both of which are correct;	
	Partial Marks	:	+1	If two or more options are correct but ONLY one option is chosen and it is a correct option;	
	Zero Marks	:	0	If unanswered;	
	Negative Marks	:	-2	In all other cases.	
•	For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers.				
	then				
	choosing ONLY (A), (B) and (D) will get +4 marks;				
	choosing ONLY (A) and (B) will get +2 marks;				
	choosing ONLY (A) and (D) will get +2 marks;				
choosing ONLY (B) and (D) will get +2 marks;					
	choosing ONLY (A) will get +1 mark;				
	choosing ONLY (B) will get +1 mark;				
	choosing ONLY (D) will get +1 mark;				
	choosing no option	on(s)	(i.e. the	e question is unanswered) will get 0 marks and choosing any other option(s) will	
	get –2 marks.				

The compound(s), which on reaction with HNO₃ will give the product having degree of rotation, $\left[\alpha\right]_{\rm D} = -52.7^{\circ}$ is(are)

Sol.

Since, we have to get the product (x) of $(\alpha)_D = -52.7^\circ$, i.e. the enantiomer of above product. Which is only possible from (C) & (D).

Q.12 The reaction of \mathbf{Q} with PhSNa yields an organic compound (major product) that gives positive Carius test on treatment with Na₂O₂ followed by addition of BaCl₂. The correct option(s) for \mathbf{Q} is(are)

Sol. A, D

In option (B) and (C), NO₂ group (an EWG) is not present ortho or para position wrt the leaving group, so $ArSN^2$ reaction will not be possible.

(D)

Q.13 The correct statement(s) related to colloids is(are)

- (A) The process of precipitating colloidal sol by an electrolyte is called peptization.
- (B) Colloidal solution freezes at higher temperature than the true solution at the same concentration.
- (C) Surfactants form micelle above critical micelle concentration (CMC). CMC depends on temperature.
- (D) Micelles are macromolecular colloids.

Sol. B, C

- (A) Process of precipitating colloidal solution by using an electrolyte is called "COAGULATION" and not peptisation.
- (B) Since, molar mass of sol is much higher than true solutions, so magnitude of any colligative properties is smaller than true solutions.

 $\left(\Delta T_{f}\right)_{sol} < \left(\Delta T_{f}\right)_{true \ solution}$

So, freezing point of sols > freezing point of true solution. So, option (B) is correct.

- (C) Micells are formed greater than or equal to CMC and above KRAFT temperature. So option (C) is also correct.
- (D) Micelles are ASSOCIATED colloids and not Macromolecular colloids.

*Q.14 An ideal gas undergoes a reversible isothermal expansion from state **I** to state **II** followed by a reversible adiabatic expansion from state **II** to state **III**. The correct plot(s) representing the changes from state **I** to state **III** is(are)

(*p*: pressure, *V*: volume, *T*: temperature, *H*: enthalpy, *S*: entropy)

Reversible isothermal process is isoenthalpic while reversible adiabatic process is isoentropic.

- Q.15 The correct statement(s) related to the metal extraction processes is(are)
 - (A) A mixture of PbS and PbO undergoes self-reduction to produce Pb and SO2.
 - (B) In the extraction process of copper from copper pyrites, silica is added to produce copper silicate.
 - (C) Partial oxidation of sulphide ore of copper by roasting, followed by self-reduction produces blister copper.
 - (D) In cyanide process, zinc powder is utilized to precipitate gold from Na $\left[Au (CN)_{2} \right]$.

Sol. A, C, D

(A) $PbS + 2PbO \xrightarrow{\text{self reduction}} 3Pb + SO_2 \uparrow$

So option (A) is correct.

(B) In the extraction Cu from copper pyrite CuFeS₂
 SiO₂ is added to remove FeO as slag FeSiO₃.
 So option (B) is wrong.

(C)
$$CuFeS_2 \xrightarrow{\text{coasting}} Cu_2S + FeS + SO_2$$

 $\downarrow \text{(matte)}$ $FeS + O_2 \longrightarrow FeO + SO_2$
 $Cu_2S + O_2 \longrightarrow Cu_2O + SO_2$
 $Cu_2S + 2Cu_2O \longrightarrow \underset{(\text{Blister copper})}{6Cu} + SO_2$

- So, option (C) is correct. (D) $Zn + 2Na[Au(CN)_2] \longrightarrow Na_2[Zn(CN)_4] + 2Au \downarrow$ So, option (D) is correct.
- Q.16 A mixture of two salts is used to prepare a solution S, which gives the following results:

White precipitate(s) only	Dilute NaOH(aq)	(ag solution	Dilute HCI(aq)	White precipitate(s) only
	Room temperature	of the salts)	Room temperature	
The correct option	n(s) for the salt mixture	is(are)		
(A) $Pb(NO_3)_2$ as	nd $Zn(NO_3)_2$	(B)	$Pb(NO_3)_2$ and $Bi(NC)$	$(0_3)_3$
(C) $AgNO_3$ and	$Bi(NO_3)_3$	(D)	$Pb(NO_3)_2$ and $Hg(NO_3)_2$	$(D_3)_2$

Sol. A, B, C

 $Pb(OH)_2$, $Zn(OH)_2$ and $Bi(OH)_3$ are white precipitates but $Hg(OH)_2$ (unstable) is not. $PbCl_2$ is white ppt.

So, option (A), (B) and (C) are correct.

				SECTION 4	
•	This section contains THREE (03) questions.				
•	The answer to each question is a NON-NEGATIVE INTEGER.				
•	For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designed to enter the answer.				
•	Answer to each	questio	n will	be evaluated according to the following marking scheme:	
	Full Mark	:	+4	If ONLY the correct integer is entered;	
	Zero Marks	:	0	In all other cases.	

*Q.17 The maximum number of possible isomers (including stereoisomers) which may be formed on *mono*bromination of 1-methylcyclohex-1-ene using Br₂ and UV light is ____.

Sol. 13

Q.18 In the reaction given below, the total number of atoms having sp^2 hybridization in the major product **P** is

The total number of possible isomers for $[Pt(NH_3)_4Cl_2]Br_2$ is ____. Q.19

Sol.

